|
import asyncio |
|
import copy |
|
import logging |
|
from dataclasses import asdict |
|
from typing import List, Optional, Union |
|
|
|
import aiohttp |
|
|
|
from lagent.llms.base_llm import AsyncLLMMixin, BaseLLM |
|
from lagent.schema import ModelStatusCode |
|
from lagent.utils.util import filter_suffix |
|
|
|
|
|
class TritonClient(BaseLLM): |
|
"""TritonClient is a wrapper of TritonClient for LLM. |
|
|
|
Args: |
|
tritonserver_addr (str): the address in format "ip:port" of |
|
triton inference server |
|
model_name (str): the name of the model |
|
session_len (int): the context size |
|
max_tokens (int): the expected generated token numbers |
|
""" |
|
|
|
def __init__(self, |
|
tritonserver_addr: str, |
|
model_name: str, |
|
session_len: int = 32768, |
|
log_level: str = 'WARNING', |
|
**kwargs): |
|
super().__init__(path=None, **kwargs) |
|
try: |
|
from lmdeploy.serve.turbomind.chatbot import Chatbot, StatusCode |
|
except Exception as e: |
|
logging.error(f'{e}') |
|
raise RuntimeError('DO NOT use turbomind.chatbot since it has ' |
|
'been removed by lmdeploy since v0.5.2') |
|
self.state_map = { |
|
StatusCode.TRITON_STREAM_END: ModelStatusCode.END, |
|
StatusCode.TRITON_SERVER_ERR: ModelStatusCode.SERVER_ERR, |
|
StatusCode.TRITON_SESSION_CLOSED: ModelStatusCode.SESSION_CLOSED, |
|
StatusCode.TRITON_STREAM_ING: ModelStatusCode.STREAM_ING, |
|
StatusCode.TRITON_SESSION_OUT_OF_LIMIT: |
|
ModelStatusCode.SESSION_OUT_OF_LIMIT, |
|
StatusCode.TRITON_SESSION_INVALID_ARG: |
|
ModelStatusCode.SESSION_INVALID_ARG, |
|
StatusCode.TRITON_SESSION_READY: ModelStatusCode.SESSION_READY |
|
} |
|
self.chatbot = Chatbot( |
|
tritonserver_addr=tritonserver_addr, |
|
model_name=model_name, |
|
session_len=session_len, |
|
log_level=log_level, |
|
**kwargs) |
|
|
|
def generate(self, |
|
inputs: Union[str, List[str]], |
|
session_id: int = 2967, |
|
request_id: str = '', |
|
sequence_start: bool = True, |
|
sequence_end: bool = True, |
|
skip_special_tokens: bool = False, |
|
**kwargs): |
|
"""Start a new round conversation of a session. Return the chat |
|
completions in non-stream mode. |
|
|
|
Args: |
|
inputs (str, List[str]): user's prompt(s) in this round |
|
session_id (int): the identical id of a session |
|
request_id (str): the identical id of this round conversation |
|
sequence_start (bool): start flag of a session |
|
sequence_end (bool): end flag of a session |
|
skip_special_tokens (bool): Whether or not to remove special tokens |
|
in the decoding. Default to be False. |
|
Returns: |
|
(a list of/batched) text/chat completion |
|
""" |
|
from lmdeploy.serve.turbomind.chatbot import Session, get_logger |
|
if isinstance(inputs, str): |
|
inputs = [inputs] |
|
prompt = inputs |
|
|
|
assert isinstance(session_id, int), \ |
|
f'INT session id is required, but got {type(session_id)}' |
|
|
|
self.chatbot.cfg = self._update_gen_params(**kwargs) |
|
max_new_tokens = self.chatbot.cfg.max_new_tokens |
|
|
|
logger = get_logger('service.ft', log_level=self.chatbot.log_level) |
|
logger.info(f'session {session_id}, request_id {request_id}, ' |
|
f'max_out_len {max_new_tokens}') |
|
|
|
if self.chatbot._session is None: |
|
sequence_start = True |
|
self.chatbot._session = Session(session_id=session_id) |
|
elif self.chatbot._session.status == 0: |
|
logger.error(f'session {session_id} has been ended. Please set ' |
|
f'`sequence_start` be True if you want to restart it') |
|
return '' |
|
|
|
self.chatbot._session.status = 1 |
|
self.chatbot._session.request_id = request_id |
|
self.chatbot._session.response = '' |
|
|
|
status, res, _ = None, '', 0 |
|
for status, res, _ in self.chatbot._stream_infer( |
|
self.chatbot._session, |
|
prompt, |
|
max_new_tokens, |
|
sequence_start, |
|
sequence_end, |
|
skip_special_tokens=skip_special_tokens): |
|
status = self.state_map.get(status) |
|
if status < ModelStatusCode.END: |
|
return '' |
|
elif status == ModelStatusCode.END: |
|
self.chatbot._session.histories = ( |
|
self.chatbot._session.histories + |
|
self.chatbot._session.prompt + |
|
self.chatbot._session.response) |
|
|
|
res = filter_suffix(res, self.gen_params.get('stop_words')) |
|
return res |
|
|
|
def stream_chat(self, |
|
inputs: List[dict], |
|
session_id: int = 2967, |
|
request_id: str = '', |
|
sequence_start: bool = True, |
|
sequence_end: bool = True, |
|
skip_special_tokens: bool = False, |
|
**kwargs): |
|
"""Start a new round conversation of a session. Return the chat |
|
completions in stream mode. |
|
|
|
Args: |
|
session_id (int): the identical id of a session |
|
inputs (List[dict]): user's inputs in this round conversation |
|
request_id (str): the identical id of this round conversation |
|
sequence_start (bool): start flag of a session |
|
sequence_end (bool): end flag of a session |
|
skip_special_tokens (bool): Whether or not to remove special tokens |
|
in the decoding. Default to be False. |
|
Returns: |
|
tuple(Status, str, int): status, text/chat completion, |
|
generated token number |
|
""" |
|
from lmdeploy.serve.turbomind.chatbot import Session, get_logger |
|
assert isinstance(session_id, int), \ |
|
f'INT session id is required, but got {type(session_id)}' |
|
|
|
self.chatbot.cfg = self._update_gen_params(**kwargs) |
|
max_new_tokens = self.chatbot.cfg.max_new_tokens |
|
|
|
logger = get_logger('service.ft', log_level=self.chatbot.log_level) |
|
logger.info(f'session {session_id}, request_id {request_id}, ' |
|
f'max_out_len {max_new_tokens}') |
|
|
|
if self.chatbot._session is None: |
|
sequence_start = True |
|
self.chatbot._session = Session(session_id=session_id) |
|
elif self.chatbot._session.status == 0: |
|
logger.error(f'session {session_id} has been ended. Please set ' |
|
f'`sequence_start` be True if you want to restart it') |
|
return ModelStatusCode.SESSION_CLOSED, '', 0 |
|
|
|
self.chatbot._session.status = 1 |
|
self.chatbot._session.request_id = request_id |
|
self.chatbot._session.response = '' |
|
|
|
prompt = self.template_parser(inputs) |
|
status, res, _ = None, '', 0 |
|
for status, res, _ in self.chatbot._stream_infer( |
|
self.chatbot._session, |
|
prompt, |
|
max_new_tokens, |
|
sequence_start, |
|
sequence_end, |
|
skip_special_tokens=skip_special_tokens): |
|
status = self.state_map.get(status) |
|
|
|
res = filter_suffix(res, self.gen_params.get('stop_words')) |
|
if status < ModelStatusCode.END: |
|
return status, res, _ |
|
elif status == ModelStatusCode.END: |
|
self.chatbot._session.histories = ( |
|
self.chatbot._session.histories + |
|
self.chatbot._session.prompt + |
|
self.chatbot._session.response) |
|
yield status, res, _ |
|
break |
|
else: |
|
yield status, res, _ |
|
|
|
def _update_gen_params(self, **kwargs): |
|
import mmengine |
|
new_gen_params = self.update_gen_params(**kwargs) |
|
self.gen_params['stop_words'] = new_gen_params.pop('stop_words') |
|
stop_words = self.chatbot._stop_words( |
|
self.gen_params.get('stop_words')) |
|
cfg = mmengine.Config( |
|
dict( |
|
session_len=self.chatbot.model.session_len, |
|
stop_words=stop_words, |
|
bad_words=self.chatbot.cfg.bad_words, |
|
**new_gen_params)) |
|
return cfg |
|
|
|
|
|
class LMDeployPipeline(BaseLLM): |
|
""" |
|
|
|
Args: |
|
path (str): The path to the model. |
|
It could be one of the following options: |
|
- i) A local directory path of a turbomind model which is |
|
converted by `lmdeploy convert` command or download |
|
from ii) and iii). |
|
- ii) The model_id of a lmdeploy-quantized model hosted |
|
inside a model repo on huggingface.co, such as |
|
"InternLM/internlm-chat-20b-4bit", |
|
"lmdeploy/llama2-chat-70b-4bit", etc. |
|
- iii) The model_id of a model hosted inside a model repo |
|
on huggingface.co, such as "internlm/internlm-chat-7b", |
|
"Qwen/Qwen-7B-Chat ", "baichuan-inc/Baichuan2-7B-Chat" |
|
and so on. |
|
model_name (str): needed when model_path is a pytorch model on |
|
huggingface.co, such as "internlm-chat-7b", |
|
"Qwen-7B-Chat ", "Baichuan2-7B-Chat" and so on. |
|
tp (int): tensor parallel |
|
pipeline_cfg (dict): config of pipeline |
|
""" |
|
|
|
def __init__(self, |
|
path: str, |
|
model_name: Optional[str] = None, |
|
tp: int = 1, |
|
pipeline_cfg=dict(), |
|
**kwargs): |
|
import lmdeploy |
|
from lmdeploy import ChatTemplateConfig, TurbomindEngineConfig, pipeline, version_info |
|
|
|
self.str_version = lmdeploy.__version__ |
|
self.version = version_info |
|
self.do_sample = kwargs.pop('do_sample', None) |
|
if self.do_sample is not None and self.version < (0, 6, 0): |
|
raise RuntimeError( |
|
'`do_sample` parameter is not supported by lmdeploy until ' |
|
f'v0.6.0, but currently using lmdeloy {self.str_version}') |
|
super().__init__(path=path, **kwargs) |
|
backend_config = copy.deepcopy(pipeline_cfg) |
|
backend_config.update(tp=tp) |
|
backend_config = { |
|
k: v |
|
for k, v in backend_config.items() |
|
if hasattr(TurbomindEngineConfig, k) |
|
} |
|
backend_config = TurbomindEngineConfig(**backend_config) |
|
chat_template_config = ChatTemplateConfig( |
|
model_name=model_name) if model_name else None |
|
self.model = pipeline( |
|
model_path=self.path, |
|
backend_config=backend_config, |
|
chat_template_config=chat_template_config, |
|
log_level='WARNING') |
|
|
|
def generate(self, |
|
inputs: Union[str, List[str]], |
|
do_preprocess: bool = None, |
|
skip_special_tokens: bool = False, |
|
return_dict: bool = False, |
|
**kwargs): |
|
"""Return the chat completions in non-stream mode. |
|
|
|
Args: |
|
inputs (Union[str, List[str]]): input texts to be completed. |
|
do_preprocess (bool): whether pre-process the messages. Default to |
|
True, which means chat_template will be applied. |
|
skip_special_tokens (bool): Whether or not to remove special tokens |
|
in the decoding. Default to be False. |
|
Returns: |
|
(a list of/batched) text/chat completion |
|
""" |
|
from lmdeploy.messages import GenerationConfig |
|
batched = True |
|
if isinstance(inputs, str): |
|
inputs = [inputs] |
|
batched = False |
|
prompt = inputs |
|
do_sample = kwargs.pop('do_sample', None) |
|
gen_params = self.update_gen_params(**kwargs) |
|
|
|
if do_sample is None: |
|
do_sample = self.do_sample |
|
if do_sample is not None and self.version < (0, 6, 0): |
|
raise RuntimeError( |
|
'`do_sample` parameter is not supported by lmdeploy until ' |
|
f'v0.6.0, but currently using lmdeloy {self.str_version}') |
|
if self.version >= (0, 6, 0): |
|
if do_sample is None: |
|
do_sample = gen_params['top_k'] > 1 or gen_params[ |
|
'temperature'] > 0 |
|
gen_params.update(do_sample=do_sample) |
|
|
|
gen_config = GenerationConfig( |
|
skip_special_tokens=skip_special_tokens, **gen_params) |
|
response = self.model.batch_infer( |
|
prompt, gen_config=gen_config, do_preprocess=do_preprocess) |
|
texts = [resp.text for resp in response] |
|
|
|
texts = filter_suffix(texts, self.gen_params.get('stop_words')) |
|
for resp, text in zip(response, texts): |
|
resp.text = text |
|
if batched: |
|
return [asdict(resp) |
|
for resp in response] if return_dict else texts |
|
return asdict(response[0]) if return_dict else texts[0] |
|
|
|
|
|
class LMDeployServer(BaseLLM): |
|
""" |
|
|
|
Args: |
|
path (str): The path to the model. |
|
It could be one of the following options: |
|
- i) A local directory path of a turbomind model which is |
|
converted by `lmdeploy convert` command or download from |
|
ii) and iii). |
|
- ii) The model_id of a lmdeploy-quantized model hosted |
|
inside a model repo on huggingface.co, such as |
|
"InternLM/internlm-chat-20b-4bit", |
|
"lmdeploy/llama2-chat-70b-4bit", etc. |
|
- iii) The model_id of a model hosted inside a model repo |
|
on huggingface.co, such as "internlm/internlm-chat-7b", |
|
"Qwen/Qwen-7B-Chat ", "baichuan-inc/Baichuan2-7B-Chat" |
|
and so on. |
|
model_name (str): needed when model_path is a pytorch model on |
|
huggingface.co, such as "internlm-chat-7b", |
|
"Qwen-7B-Chat ", "Baichuan2-7B-Chat" and so on. |
|
server_name (str): host ip for serving |
|
server_port (int): server port |
|
tp (int): tensor parallel |
|
log_level (str): set log level whose value among |
|
[CRITICAL, ERROR, WARNING, INFO, DEBUG] |
|
""" |
|
|
|
def __init__(self, |
|
path: str, |
|
model_name: Optional[str] = None, |
|
server_name: str = '0.0.0.0', |
|
server_port: int = 23333, |
|
tp: int = 1, |
|
log_level: str = 'WARNING', |
|
serve_cfg=dict(), |
|
**kwargs): |
|
super().__init__(path=path, **kwargs) |
|
self.model_name = model_name |
|
|
|
import lmdeploy |
|
self.client = lmdeploy.serve( |
|
model_path=self.path, |
|
model_name=model_name, |
|
server_name=server_name, |
|
server_port=server_port, |
|
tp=tp, |
|
log_level=log_level, |
|
**serve_cfg) |
|
|
|
def generate(self, |
|
inputs: Union[str, List[str]], |
|
session_id: int = 2967, |
|
sequence_start: bool = True, |
|
sequence_end: bool = True, |
|
ignore_eos: bool = False, |
|
skip_special_tokens: Optional[bool] = False, |
|
timeout: int = 30, |
|
**kwargs) -> List[str]: |
|
"""Start a new round conversation of a session. Return the chat |
|
completions in non-stream mode. |
|
|
|
Args: |
|
inputs (str, List[str]): user's prompt(s) in this round |
|
session_id (int): the identical id of a session |
|
sequence_start (bool): start flag of a session |
|
sequence_end (bool): end flag of a session |
|
ignore_eos (bool): indicator for ignoring eos |
|
skip_special_tokens (bool): Whether or not to remove special tokens |
|
in the decoding. Default to be False. |
|
timeout (int): max time to wait for response |
|
Returns: |
|
(a list of/batched) text/chat completion |
|
""" |
|
|
|
batched = True |
|
if isinstance(inputs, str): |
|
inputs = [inputs] |
|
batched = False |
|
|
|
gen_params = self.update_gen_params(**kwargs) |
|
max_new_tokens = gen_params.pop('max_new_tokens') |
|
gen_params.update(max_tokens=max_new_tokens) |
|
|
|
resp = [''] * len(inputs) |
|
for text in self.client.completions_v1( |
|
self.model_name, |
|
inputs, |
|
session_id=session_id, |
|
sequence_start=sequence_start, |
|
sequence_end=sequence_end, |
|
stream=False, |
|
ignore_eos=ignore_eos, |
|
skip_special_tokens=skip_special_tokens, |
|
timeout=timeout, |
|
**gen_params): |
|
resp = [ |
|
resp[i] + item['text'] |
|
for i, item in enumerate(text['choices']) |
|
] |
|
|
|
resp = filter_suffix(resp, self.gen_params.get('stop_words')) |
|
if not batched: |
|
return resp[0] |
|
return resp |
|
|
|
def stream_chat(self, |
|
inputs: List[dict], |
|
session_id=0, |
|
sequence_start: bool = True, |
|
sequence_end: bool = True, |
|
stream: bool = True, |
|
ignore_eos: bool = False, |
|
skip_special_tokens: Optional[bool] = False, |
|
timeout: int = 30, |
|
**kwargs): |
|
"""Start a new round conversation of a session. Return the chat |
|
completions in stream mode. |
|
|
|
Args: |
|
session_id (int): the identical id of a session |
|
inputs (List[dict]): user's inputs in this round conversation |
|
sequence_start (bool): start flag of a session |
|
sequence_end (bool): end flag of a session |
|
stream (bool): return in a streaming format if enabled |
|
ignore_eos (bool): indicator for ignoring eos |
|
skip_special_tokens (bool): Whether or not to remove special tokens |
|
in the decoding. Default to be False. |
|
timeout (int): max time to wait for response |
|
Returns: |
|
tuple(Status, str, int): status, text/chat completion, |
|
generated token number |
|
""" |
|
gen_params = self.update_gen_params(**kwargs) |
|
max_new_tokens = gen_params.pop('max_new_tokens') |
|
gen_params.update(max_tokens=max_new_tokens) |
|
prompt = self.template_parser(inputs) |
|
|
|
resp = '' |
|
finished = False |
|
stop_words = self.gen_params.get('stop_words') |
|
for text in self.client.completions_v1( |
|
self.model_name, |
|
prompt, |
|
session_id=session_id, |
|
sequence_start=sequence_start, |
|
sequence_end=sequence_end, |
|
stream=stream, |
|
ignore_eos=ignore_eos, |
|
skip_special_tokens=skip_special_tokens, |
|
timeout=timeout, |
|
**gen_params): |
|
resp += text['choices'][0]['text'] |
|
if not resp: |
|
continue |
|
|
|
for sw in stop_words: |
|
if sw in resp: |
|
resp = filter_suffix(resp, stop_words) |
|
finished = True |
|
break |
|
yield ModelStatusCode.STREAM_ING, resp, None |
|
if finished: |
|
break |
|
yield ModelStatusCode.END, resp, None |
|
|
|
|
|
class LMDeployClient(LMDeployServer): |
|
""" |
|
|
|
Args: |
|
url (str): communicating address 'http://<ip>:<port>' of |
|
api_server |
|
model_name (str): needed when model_path is a pytorch model on |
|
huggingface.co, such as "internlm-chat-7b", |
|
"Qwen-7B-Chat ", "Baichuan2-7B-Chat" and so on. |
|
""" |
|
|
|
def __init__(self, url: str, model_name: str, **kwargs): |
|
BaseLLM.__init__(self, path=url, **kwargs) |
|
from lmdeploy.serve.openai.api_client import APIClient |
|
self.client = APIClient(url) |
|
self.model_name = model_name |
|
|
|
|
|
class AsyncLMDeployPipeline(AsyncLLMMixin, LMDeployPipeline): |
|
""" |
|
|
|
Args: |
|
path (str): The path to the model. |
|
It could be one of the following options: |
|
- i) A local directory path of a turbomind model which is |
|
converted by `lmdeploy convert` command or download |
|
from ii) and iii). |
|
- ii) The model_id of a lmdeploy-quantized model hosted |
|
inside a model repo on huggingface.co, such as |
|
"InternLM/internlm-chat-20b-4bit", |
|
"lmdeploy/llama2-chat-70b-4bit", etc. |
|
- iii) The model_id of a model hosted inside a model repo |
|
on huggingface.co, such as "internlm/internlm-chat-7b", |
|
"Qwen/Qwen-7B-Chat ", "baichuan-inc/Baichuan2-7B-Chat" |
|
and so on. |
|
model_name (str): needed when model_path is a pytorch model on |
|
huggingface.co, such as "internlm-chat-7b", |
|
"Qwen-7B-Chat ", "Baichuan2-7B-Chat" and so on. |
|
tp (int): tensor parallel |
|
pipeline_cfg (dict): config of pipeline |
|
""" |
|
|
|
async def generate(self, |
|
inputs: Union[str, List[str]], |
|
session_ids: Union[int, List[int]] = None, |
|
do_preprocess: bool = None, |
|
skip_special_tokens: bool = False, |
|
return_dict: bool = False, |
|
**kwargs): |
|
"""Return the chat completions in non-stream mode. |
|
|
|
Args: |
|
inputs (Union[str, List[str]]): input texts to be completed. |
|
do_preprocess (bool): whether pre-process the messages. Default to |
|
True, which means chat_template will be applied. |
|
skip_special_tokens (bool): Whether or not to remove special tokens |
|
in the decoding. Default to be False. |
|
Returns: |
|
(a list of/batched) text/chat completion |
|
""" |
|
from lmdeploy.messages import GenerationConfig, Response |
|
|
|
batched = True |
|
if isinstance(inputs, str): |
|
inputs = [inputs] |
|
batched = False |
|
if session_ids is None: |
|
session_ids = list(range(len(inputs))) |
|
elif isinstance(session_ids, (int, str)): |
|
session_ids = [session_ids] |
|
assert len(inputs) == len(session_ids) |
|
|
|
prompt = inputs |
|
gen_params = self.update_gen_params(**kwargs) |
|
gen_config = GenerationConfig( |
|
skip_special_tokens=skip_special_tokens, **gen_params) |
|
|
|
async def _inner_generate(uid, text): |
|
resp = Response('', 0, 0, uid) |
|
async for out in self.model.generate( |
|
text, |
|
uid, |
|
gen_config, |
|
stream_response=True, |
|
sequence_start=True, |
|
sequence_end=True, |
|
do_preprocess=do_preprocess, |
|
**kwargs): |
|
resp.text += out.response |
|
resp.generate_token_len = out.generate_token_len |
|
resp.input_token_len = out.input_token_len |
|
resp.finish_reason = out.finish_reason |
|
if out.token_ids: |
|
resp.token_ids.extend(out.token_ids) |
|
if out.logprobs: |
|
if resp.logprobs is None: |
|
resp.logprobs = [] |
|
resp.logprobs.extend(out.logprobs) |
|
return resp |
|
|
|
response = await asyncio.gather(*[ |
|
_inner_generate(sid, inp) for sid, inp in zip(session_ids, prompt) |
|
]) |
|
texts = [resp.text for resp in response] |
|
|
|
texts = filter_suffix(texts, self.gen_params.get('stop_words')) |
|
for resp, text in zip(response, texts): |
|
resp.text = text |
|
if batched: |
|
return [asdict(resp) |
|
for resp in response] if return_dict else texts |
|
return asdict(response[0]) if return_dict else texts[0] |
|
|
|
|
|
class AsyncLMDeployServer(AsyncLLMMixin, LMDeployServer): |
|
""" |
|
|
|
Args: |
|
path (str): The path to the model. |
|
It could be one of the following options: |
|
- i) A local directory path of a turbomind model which is |
|
converted by `lmdeploy convert` command or download from |
|
ii) and iii). |
|
- ii) The model_id of a lmdeploy-quantized model hosted |
|
inside a model repo on huggingface.co, such as |
|
"InternLM/internlm-chat-20b-4bit", |
|
"lmdeploy/llama2-chat-70b-4bit", etc. |
|
- iii) The model_id of a model hosted inside a model repo |
|
on huggingface.co, such as "internlm/internlm-chat-7b", |
|
"Qwen/Qwen-7B-Chat ", "baichuan-inc/Baichuan2-7B-Chat" |
|
and so on. |
|
model_name (str): needed when model_path is a pytorch model on |
|
huggingface.co, such as "internlm-chat-7b", |
|
"Qwen-7B-Chat ", "Baichuan2-7B-Chat" and so on. |
|
server_name (str): host ip for serving |
|
server_port (int): server port |
|
tp (int): tensor parallel |
|
log_level (str): set log level whose value among |
|
[CRITICAL, ERROR, WARNING, INFO, DEBUG] |
|
""" |
|
|
|
async def generate( |
|
self, |
|
inputs: Union[str, List[str]], |
|
session_ids: Union[int, List[int]] = None, |
|
sequence_start: bool = True, |
|
sequence_end: bool = True, |
|
ignore_eos: bool = False, |
|
skip_special_tokens: Optional[bool] = False, |
|
timeout: int = 30, |
|
**kwargs, |
|
): |
|
"""Start a new round conversation of a session. Return the chat |
|
completions in non-stream mode. |
|
|
|
Args: |
|
inputs (str, List[str]): user's prompt(s) in this round |
|
session_ids (int, List[int]): session id(s) |
|
sequence_start (bool): start flag of a session |
|
sequence_end (bool): end flag of a session |
|
ignore_eos (bool): indicator for ignoring eos |
|
skip_special_tokens (bool): Whether or not to remove special tokens |
|
in the decoding. Default to be False. |
|
timeout (int): max time to wait for response |
|
Returns: |
|
(a list of/batched) text/chat completion |
|
""" |
|
from lmdeploy.serve.openai.api_client import json_loads |
|
|
|
batched = True |
|
if isinstance(inputs, str): |
|
inputs = [inputs] |
|
batched = False |
|
|
|
gen_params = self.update_gen_params(**kwargs) |
|
max_new_tokens = gen_params.pop('max_new_tokens') |
|
gen_params.update(max_tokens=max_new_tokens) |
|
|
|
responses = [''] * len(inputs) |
|
pload = dict( |
|
model=self.model_name, |
|
prompt=inputs, |
|
sequence_start=sequence_start, |
|
sequence_end=sequence_end, |
|
stream=False, |
|
ignore_eos=ignore_eos, |
|
skip_special_tokens=skip_special_tokens, |
|
timeout=timeout, |
|
**gen_params) |
|
async with aiohttp.ClientSession( |
|
timeout=aiohttp.ClientTimeout(3 * 3600)) as session: |
|
async with session.post( |
|
self.client.completions_v1_url, |
|
headers=self.client.headers, |
|
json=pload) as resp: |
|
async for chunk in resp.content: |
|
if chunk: |
|
decoded = chunk.decode('utf-8') |
|
output = json_loads(decoded) |
|
responses = [ |
|
response + item['text'] for response, item in zip( |
|
responses, output['choices']) |
|
] |
|
|
|
responses = filter_suffix(responses, self.gen_params.get('stop_words')) |
|
if not batched: |
|
return responses[0] |
|
return responses |
|
|
|
async def stream_chat( |
|
self, |
|
inputs: List[dict], |
|
session_id: int = None, |
|
sequence_start: bool = True, |
|
sequence_end: bool = True, |
|
stream: bool = True, |
|
ignore_eos: bool = False, |
|
skip_special_tokens: Optional[bool] = False, |
|
timeout: int = 30, |
|
**kwargs, |
|
): |
|
"""Start a new round conversation of a session. Return the chat |
|
completions in stream mode. |
|
|
|
Args: |
|
inputs (List[dict]): user's inputs in this round conversation |
|
session_id (int): session id |
|
sequence_start (bool): start flag of a session |
|
sequence_end (bool): end flag of a session |
|
stream (bool): return in a streaming format if enabled |
|
ignore_eos (bool): indicator for ignoring eos |
|
skip_special_tokens (bool): Whether or not to remove special tokens |
|
in the decoding. Default to be False. |
|
timeout (int): max time to wait for response |
|
Returns: |
|
tuple(Status, str, int): status, text/chat completion, |
|
generated token number |
|
""" |
|
from lmdeploy.serve.openai.api_client import json_loads |
|
|
|
gen_params = self.update_gen_params(**kwargs) |
|
max_new_tokens = gen_params.pop('max_new_tokens') |
|
gen_params.update(max_tokens=max_new_tokens) |
|
prompt = self.template_parser(inputs) |
|
|
|
response = '' |
|
finished = False |
|
stop_words = self.gen_params.get('stop_words') |
|
|
|
pload = dict( |
|
model=self.model_name, |
|
prompt=prompt, |
|
sequence_start=sequence_start, |
|
sequence_end=sequence_end, |
|
stream=stream, |
|
ignore_eos=ignore_eos, |
|
skip_special_tokens=skip_special_tokens, |
|
timeout=timeout, |
|
**gen_params) |
|
async with aiohttp.ClientSession( |
|
timeout=aiohttp.ClientTimeout(3 * 3600)) as session: |
|
async with session.post( |
|
self.client.completions_v1_url, |
|
headers=self.client.headers, |
|
json=pload) as resp: |
|
async for chunk in resp.content: |
|
if chunk: |
|
decoded = chunk.decode('utf-8') |
|
if not decoded.strip() or decoded.rstrip( |
|
) == 'data: [DONE]': |
|
continue |
|
if decoded[:6] == 'data: ': |
|
decoded = decoded[6:] |
|
output = json_loads(decoded) |
|
response += output['choices'][0]['text'] |
|
if not response: |
|
continue |
|
|
|
for sw in stop_words: |
|
if sw in response: |
|
response = filter_suffix(response, stop_words) |
|
finished = True |
|
break |
|
yield ModelStatusCode.STREAM_ING, response, None |
|
if finished: |
|
break |
|
yield ModelStatusCode.END, response, None |
|
|
|
|
|
class AsyncLMDeployClient(AsyncLMDeployServer): |
|
""" |
|
|
|
Args: |
|
url (str): communicating address 'http://<ip>:<port>' of |
|
api_server |
|
model_name (str): needed when model_path is a pytorch model on |
|
huggingface.co, such as "internlm-chat-7b", |
|
"Qwen-7B-Chat ", "Baichuan2-7B-Chat" and so on. |
|
""" |
|
|
|
def __init__(self, url: str, model_name: str, **kwargs): |
|
BaseLLM.__init__(self, path=url, **kwargs) |
|
from lmdeploy.serve.openai.api_client import APIClient |
|
self.client = APIClient(url) |
|
self.model_name = model_name |
|
|