|
import warnings |
|
from typing import Dict, List, Optional, Tuple, Union |
|
|
|
from lagent.llms.base_llm import AsyncLLMMixin, BaseLLM |
|
|
|
|
|
class APITemplateParser: |
|
"""Intermidate prompt template parser, specifically for API models. |
|
|
|
Args: |
|
meta_template (Dict): The meta template for the model. |
|
""" |
|
|
|
def __init__(self, meta_template: Optional[Dict] = None): |
|
self.meta_template = meta_template |
|
|
|
if meta_template: |
|
assert isinstance(meta_template, list) |
|
self.roles: Dict[str, dict] = dict() |
|
for item in meta_template: |
|
assert isinstance(item, dict) |
|
assert item['role'] not in self.roles, \ |
|
'role in meta prompt must be unique!' |
|
self.roles[item['role']] = item.copy() |
|
|
|
def __call__(self, dialog: List[Union[str, List]]): |
|
"""Parse the intermidate prompt template, and wrap it with meta |
|
template if applicable. When the meta template is set and the input is |
|
a list, the return value will be a list containing the full |
|
conversation history. Each item looks like: |
|
|
|
.. code-block:: python |
|
|
|
{'role': 'user', 'content': '...'}). |
|
|
|
Args: |
|
dialog (List[str or list]): An intermidate prompt |
|
template (potentially before being wrapped by meta template). |
|
|
|
Returns: |
|
List[str or list]: The finalized prompt or a conversation. |
|
""" |
|
assert isinstance(dialog, (str, list)) |
|
if isinstance(dialog, str): |
|
return dialog |
|
if self.meta_template: |
|
|
|
prompt = list() |
|
|
|
generate = True |
|
for i, item in enumerate(dialog): |
|
if not generate: |
|
break |
|
if isinstance(item, str): |
|
if item.strip(): |
|
|
|
warnings.warn('Non-empty string in prompt template ' |
|
'will be ignored in API models.') |
|
else: |
|
api_prompts = self._prompt2api(item) |
|
prompt.append(api_prompts) |
|
|
|
|
|
new_prompt = list([prompt[0]]) |
|
last_role = prompt[0]['role'] |
|
for item in prompt[1:]: |
|
if item['role'] == last_role: |
|
new_prompt[-1]['content'] += '\n' + item['content'] |
|
else: |
|
last_role = item['role'] |
|
new_prompt.append(item) |
|
prompt = new_prompt |
|
|
|
else: |
|
|
|
prompt = '' |
|
last_sep = '' |
|
for item in dialog: |
|
if isinstance(item, str): |
|
if item: |
|
prompt += last_sep + item |
|
elif item.get('content', ''): |
|
prompt += last_sep + item.get('content', '') |
|
last_sep = '\n' |
|
return prompt |
|
|
|
def _prompt2api(self, prompts: Union[List, str]) -> Tuple[str, bool]: |
|
"""Convert the prompts to a API-style prompts, given an updated |
|
role_dict. |
|
|
|
Args: |
|
prompts (Union[List, str]): The prompts to be converted. |
|
role_dict (Dict[str, Dict]): The updated role dict. |
|
for_gen (bool): If True, the prompts will be converted for |
|
generation tasks. The conversion stops before the first |
|
role whose "generate" is set to True. |
|
|
|
Returns: |
|
Tuple[str, bool]: The converted string, and whether the follow-up |
|
conversion should be proceeded. |
|
""" |
|
if isinstance(prompts, str): |
|
return prompts |
|
elif isinstance(prompts, dict): |
|
api_role = self._role2api_role(prompts) |
|
return api_role |
|
|
|
res = [] |
|
for prompt in prompts: |
|
if isinstance(prompt, str): |
|
raise TypeError('Mixing str without explicit role is not ' |
|
'allowed in API models!') |
|
else: |
|
api_role = self._role2api_role(prompt) |
|
res.append(api_role) |
|
return res |
|
|
|
def _role2api_role(self, role_prompt: Dict) -> Tuple[str, bool]: |
|
merged_prompt = self.roles[role_prompt['role']] |
|
if merged_prompt.get('fallback_role'): |
|
merged_prompt = self.roles[self.roles[ |
|
merged_prompt['fallback_role']]] |
|
res = role_prompt.copy() |
|
res['role'] = merged_prompt['api_role'] |
|
res['content'] = merged_prompt.get('begin', '') |
|
res['content'] += role_prompt.get('content', '') |
|
res['content'] += merged_prompt.get('end', '') |
|
return res |
|
|
|
|
|
class BaseAPILLM(BaseLLM): |
|
"""Base class for API model wrapper. |
|
|
|
Args: |
|
model_type (str): The type of model. |
|
retry (int): Number of retires if the API call fails. Defaults to 2. |
|
meta_template (Dict, optional): The model's meta prompt |
|
template if needed, in case the requirement of injecting or |
|
wrapping of any meta instructions. |
|
""" |
|
|
|
is_api: bool = True |
|
|
|
def __init__(self, |
|
model_type: str, |
|
retry: int = 2, |
|
template_parser: 'APITemplateParser' = APITemplateParser, |
|
meta_template: Optional[Dict] = None, |
|
*, |
|
max_new_tokens: int = 512, |
|
top_p: float = 0.8, |
|
top_k: int = 40, |
|
temperature: float = 0.8, |
|
repetition_penalty: float = 0.0, |
|
stop_words: Union[List[str], str] = None): |
|
self.model_type = model_type |
|
self.meta_template = meta_template |
|
self.retry = retry |
|
if template_parser: |
|
self.template_parser = template_parser(meta_template) |
|
|
|
if isinstance(stop_words, str): |
|
stop_words = [stop_words] |
|
self.gen_params = dict( |
|
max_new_tokens=max_new_tokens, |
|
top_p=top_p, |
|
top_k=top_k, |
|
temperature=temperature, |
|
repetition_penalty=repetition_penalty, |
|
stop_words=stop_words, |
|
skip_special_tokens=False) |
|
|
|
|
|
class AsyncBaseAPILLM(AsyncLLMMixin, BaseAPILLM): |
|
pass |
|
|