|
import os |
|
import asyncio |
|
import json |
|
import re |
|
import requests |
|
import streamlit as st |
|
|
|
from lagent.agents import Agent |
|
from lagent.prompts.parsers import PluginParser |
|
from lagent.agents.stream import PLUGIN_CN, get_plugin_prompt |
|
from lagent.schema import AgentMessage |
|
from lagent.actions import ArxivSearch |
|
from lagent.hooks import Hook |
|
from lagent.llms import GPTAPI |
|
|
|
YOUR_TOKEN_HERE = os.getenv("token") |
|
if not YOUR_TOKEN_HERE: |
|
raise EnvironmentError("未找到环境变量 'token',请设置后再运行程序。") |
|
|
|
|
|
class PrefixedMessageHook(Hook): |
|
def __init__(self, prefix, senders=None): |
|
""" |
|
初始化Hook |
|
:param prefix: 消息前缀 |
|
:param senders: 指定发送者列表 |
|
""" |
|
self.prefix = prefix |
|
self.senders = senders or [] |
|
|
|
def before_agent(self, agent, messages, session_id): |
|
""" |
|
在代理处理消息前修改消息内容 |
|
:param agent: 当前代理 |
|
:param messages: 消息列表 |
|
:param session_id: 会话ID |
|
""" |
|
for message in messages: |
|
if message.sender in self.senders: |
|
message.content = self.prefix + message.content |
|
|
|
class AsyncBlogger: |
|
"""博客生成类,整合写作者和批评者。""" |
|
|
|
def __init__(self, model_type, api_base, writer_prompt, critic_prompt, critic_prefix='', max_turn=2): |
|
""" |
|
初始化博客生成器 |
|
:param model_type: 模型类型 |
|
:param api_base: API 基地址 |
|
:param writer_prompt: 写作者提示词 |
|
:param critic_prompt: 批评者提示词 |
|
:param critic_prefix: 批评消息前缀 |
|
:param max_turn: 最大轮次 |
|
""" |
|
self.model_type = model_type |
|
self.api_base = api_base |
|
self.llm = GPTAPI( |
|
model_type=model_type, |
|
api_base=api_base, |
|
key=YOUR_TOKEN_HERE, |
|
max_new_tokens=4096, |
|
) |
|
self.plugins = [dict(type='lagent.actions.ArxivSearch')] |
|
self.writer = Agent( |
|
self.llm, |
|
writer_prompt, |
|
name='写作者', |
|
output_format=dict( |
|
type=PluginParser, |
|
template=PLUGIN_CN, |
|
prompt=get_plugin_prompt(self.plugins) |
|
) |
|
) |
|
self.critic = Agent( |
|
self.llm, |
|
critic_prompt, |
|
name='批评者', |
|
hooks=[PrefixedMessageHook(critic_prefix, ['写作者'])] |
|
) |
|
self.max_turn = max_turn |
|
|
|
async def forward(self, message: AgentMessage, update_placeholder): |
|
""" |
|
执行多阶段博客生成流程 |
|
:param message: 初始消息 |
|
:param update_placeholder: Streamlit占位符 |
|
:return: 最终优化的博客内容 |
|
""" |
|
step1_placeholder = update_placeholder.container() |
|
step2_placeholder = update_placeholder.container() |
|
step3_placeholder = update_placeholder.container() |
|
|
|
|
|
step1_placeholder.markdown("**Step 1: 生成初始内容...**") |
|
message = self.writer(message) |
|
if message.content: |
|
step1_placeholder.markdown(f"**生成的初始内容**:\n\n{message.content}") |
|
else: |
|
step1_placeholder.markdown("**生成的初始内容为空,请检查生成逻辑。**") |
|
|
|
|
|
step2_placeholder.markdown("**Step 2: 批评者正在提供反馈和文献推荐...**") |
|
message = self.critic(message) |
|
if message.content: |
|
|
|
suggestions = re.search(r"1\. 批评建议:\n(.*?)2\. 推荐的关键词:", message.content, re.S) |
|
keywords = re.search(r"2\. 推荐的关键词:\n- (.*)", message.content) |
|
feedback = suggestions.group(1).strip() if suggestions else "未提供批评建议" |
|
keywords = keywords.group(1).strip() if keywords else "未提供关键词" |
|
|
|
|
|
arxiv_search = ArxivSearch() |
|
arxiv_results = arxiv_search.get_arxiv_article_information(keywords) |
|
|
|
|
|
message.content = f"**批评建议**:\n{feedback}\n\n**推荐的文献**:\n{arxiv_results}" |
|
step2_placeholder.markdown(f"**批评和文献推荐**:\n\n{message.content}") |
|
else: |
|
step2_placeholder.markdown("**批评内容为空,请检查批评逻辑。**") |
|
|
|
|
|
step3_placeholder.markdown("**Step 3: 根据反馈改进内容...**") |
|
improvement_prompt = AgentMessage( |
|
sender="critic", |
|
content=( |
|
f"根据以下批评建议和推荐文献对内容进行改进:\n\n" |
|
f"批评建议:\n{feedback}\n\n" |
|
f"推荐文献:\n{arxiv_results}\n\n" |
|
f"请优化初始内容,使其更加清晰、丰富,并符合专业水准。" |
|
), |
|
) |
|
message = self.writer(improvement_prompt) |
|
if message.content: |
|
step3_placeholder.markdown(f"**最终优化的博客内容**:\n\n{message.content}") |
|
else: |
|
step3_placeholder.markdown("**最终优化的博客内容为空,请检查生成逻辑。**") |
|
|
|
return message |
|
|
|
def setup_sidebar(): |
|
"""设置侧边栏,选择模型。""" |
|
model_name = st.sidebar.text_input('模型名称:', value='internlm2.5-latest') |
|
api_base = st.sidebar.text_input( |
|
'API Base 地址:', value='https://internlm-chat.intern-ai.org.cn/puyu/api/v1/chat/completions' |
|
) |
|
|
|
return model_name, api_base |
|
|
|
def main(): |
|
""" |
|
主函数:构建Streamlit界面并处理用户交互 |
|
""" |
|
st.title("多代理博客优化助手") |
|
|
|
model_type, api_base = setup_sidebar() |
|
topic = st.text_input('输入一个话题:', 'Self-Supervised Learning') |
|
generate_button = st.button('生成博客内容') |
|
|
|
if ( |
|
'blogger' not in st.session_state or |
|
st.session_state['model_type'] != model_type or |
|
st.session_state['api_base'] != api_base |
|
): |
|
st.session_state['blogger'] = AsyncBlogger( |
|
model_type=model_type, |
|
api_base=api_base, |
|
writer_prompt="你是一位优秀的AI内容写作者,请撰写一篇有吸引力且信息丰富的博客内容。", |
|
critic_prompt=""" |
|
作为一位严谨的批评者,请给出建设性的批评和改进建议,并基于相关主题使用已有的工具推荐一些参考文献,推荐的关键词应该是英语形式,简洁且切题。 |
|
请按照以下格式提供反馈: |
|
1. 批评建议: |
|
- (具体建议) |
|
2. 推荐的关键词: |
|
- (关键词1, 关键词2, ...) |
|
""", |
|
critic_prefix="请批评以下内容,并提供改进建议:\n\n" |
|
) |
|
st.session_state['model_type'] = model_type |
|
st.session_state['api_base'] = api_base |
|
|
|
if generate_button: |
|
update_placeholder = st.empty() |
|
|
|
async def run_async_blogger(): |
|
message = AgentMessage( |
|
sender='user', |
|
content=f"请撰写一篇关于{topic}的博客文章,要求表达专业,生动有趣,并且易于理解。" |
|
) |
|
result = await st.session_state['blogger'].forward(message, update_placeholder) |
|
return result |
|
|
|
loop = asyncio.new_event_loop() |
|
asyncio.set_event_loop(loop) |
|
loop.run_until_complete(run_async_blogger()) |
|
|
|
if __name__ == '__main__': |
|
main() |