File size: 13,847 Bytes
ec878fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
import copy
import logging
from typing import Dict, List, Optional, Union
from lagent.schema import ModelStatusCode
from .base_api import APITemplateParser
from .base_llm import BaseLLM
logger = logging.getLogger(__name__)
class HFTransformer(BaseLLM):
"""Model wrapper around HuggingFace general models.
Adapted from Internlm (https://github.com/InternLM/InternLM/blob/main/
chat/web_demo.py)
Args:
path (str): The name or path to HuggingFace's model.
tokenizer_path (str): The path to the tokenizer. Defaults to None.
tokenizer_kwargs (dict): Keyword arguments for the tokenizer.
Defaults to {}.
tokenizer_only (bool): If True, only the tokenizer will be initialized.
Defaults to False.
model_kwargs (dict): Keyword arguments for the model, used in loader.
Defaults to dict(device_map='auto').
meta_template (Dict, optional): The model's meta prompt
template if needed, in case the requirement of injecting or
wrapping of any meta instructions.
"""
def __init__(self,
path: str,
tokenizer_path: Optional[str] = None,
tokenizer_kwargs: dict = dict(),
tokenizer_only: bool = False,
model_kwargs: dict = dict(device_map='auto'),
meta_template: Optional[Dict] = None,
stop_words_id: Union[List[int], int] = None,
**kwargs):
super().__init__(
path=path,
tokenizer_only=tokenizer_only,
meta_template=meta_template,
**kwargs)
if isinstance(stop_words_id, int):
stop_words_id = [stop_words_id]
self.gen_params.update(stop_words_id=stop_words_id)
if self.gen_params['stop_words'] is not None and \
self.gen_params['stop_words_id'] is not None:
logger.warning('Both stop_words and stop_words_id are specified,'
'only stop_words_id will be used.')
self._load_tokenizer(
path=path,
tokenizer_path=tokenizer_path,
tokenizer_kwargs=tokenizer_kwargs)
if not tokenizer_only:
self._load_model(path=path, model_kwargs=model_kwargs)
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList # noqa: E501
self.logits_processor = LogitsProcessorList()
self.stopping_criteria = StoppingCriteriaList()
self.prefix_allowed_tokens_fn = None
stop_words_id = []
if self.gen_params.get('stop_words_id'):
stop_words_id = self.gen_params.get('stop_words_id')
elif self.gen_params.get('stop_words'):
for sw in self.gen_params.get('stop_words'):
stop_words_id.append(self.tokenizer(sw)['input_ids'][-1])
self.additional_eos_token_id = stop_words_id
def _load_tokenizer(self, path: str, tokenizer_path: Optional[str],
tokenizer_kwargs: dict):
from transformers import AutoTokenizer
self.tokenizer = AutoTokenizer.from_pretrained(
tokenizer_path if tokenizer_path else path,
trust_remote_code=True,
**tokenizer_kwargs)
if self.tokenizer.pad_token_id is None:
if self.tokenizer.eos_token is not None:
logger.warning(
f'Using eos_token_id {self.tokenizer.eos_token} '
'as pad_token_id.')
self.tokenizer.pad_token = self.tokenizer.eos_token
else:
from transformers.generation import GenerationConfig
self.gcfg = GenerationConfig.from_pretrained(path)
if self.gcfg.pad_token_id is not None:
logger.warning(
f'Using pad_token_id {self.gcfg.pad_token_id} '
'as pad_token_id.')
self.tokenizer.pad_token_id = self.gcfg.pad_token_id
else:
raise ValueError(
'pad_token_id is not set for this tokenizer. Try to '
'set pad_token_id via passing '
'`pad_token_id={PAD_TOKEN_ID}` in model_cfg.')
def _load_model(self, path: str, model_kwargs: dict):
import torch
from transformers import AutoModel
model_kwargs.setdefault('torch_dtype', torch.float16)
self.model = AutoModel.from_pretrained(
path, trust_remote_code=True, **model_kwargs)
self.model.eval()
def tokenize(self, inputs: str):
assert isinstance(inputs, str)
inputs = self.tokenizer(
inputs, return_tensors='pt', return_length=True)
return inputs['input_ids'].tolist()
def generate(
self,
inputs: Union[str, List[str]],
do_sample: bool = True,
**kwargs,
):
"""Return the chat completions in non-stream mode.
Args:
inputs (Union[str, List[str]]): input texts to be completed.
do_sample (bool): do sampling if enabled
Returns:
(a list of/batched) text/chat completion
"""
for status, chunk, _ in self.stream_generate(inputs, do_sample,
**kwargs):
response = chunk
return response
def stream_generate(
self,
inputs: List[str],
do_sample: bool = True,
**kwargs,
):
"""Return the chat completions in stream mode.
Args:
inputs (Union[str, List[str]]): input texts to be completed.
do_sample (bool): do sampling if enabled
Returns:
tuple(Status, str, int): status, text/chat completion,
generated token number
"""
import torch
from torch import nn
with torch.no_grad():
batched = True
if isinstance(inputs, str):
inputs = [inputs]
batched = False
inputs = self.tokenizer(
inputs, padding=True, return_tensors='pt', return_length=True)
input_length = inputs['length']
for k, v in inputs.items():
inputs[k] = v.cuda()
input_ids = inputs['input_ids']
attention_mask = inputs['attention_mask']
batch_size = input_ids.shape[0]
input_ids_seq_length = input_ids.shape[-1]
generation_config = self.model.generation_config
generation_config = copy.deepcopy(generation_config)
new_gen_params = self.update_gen_params(**kwargs)
generation_config.update(**new_gen_params)
generation_config.update(**kwargs)
model_kwargs = generation_config.to_dict()
model_kwargs['attention_mask'] = attention_mask
_, eos_token_id = ( # noqa: F841 # pylint: disable=W0612
generation_config.bos_token_id,
generation_config.eos_token_id,
)
if eos_token_id is None:
if self.gcfg.eos_token_id is not None:
eos_token_id = self.gcfg.eos_token_id
else:
eos_token_id = []
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
if self.additional_eos_token_id is not None:
eos_token_id.extend(self.additional_eos_token_id)
eos_token_id_tensor = torch.tensor(eos_token_id).to(
input_ids.device) if eos_token_id is not None else None
generation_config.max_length = (
generation_config.max_new_tokens + input_ids_seq_length)
# Set generation parameters if not already defined
logits_processor = self.logits_processor
stopping_criteria = self.stopping_criteria
logits_processor = self.model._get_logits_processor(
generation_config=generation_config,
input_ids_seq_length=input_ids_seq_length,
encoder_input_ids=input_ids,
prefix_allowed_tokens_fn=self.prefix_allowed_tokens_fn,
logits_processor=logits_processor,
)
stopping_criteria = self.model._get_stopping_criteria(
generation_config=generation_config,
stopping_criteria=stopping_criteria)
logits_warper = self.model._get_logits_warper(generation_config)
unfinished_sequences = input_ids.new(batch_size).fill_(1)
scores = None
while True:
model_inputs = self.model.prepare_inputs_for_generation(
input_ids, **model_kwargs)
# forward pass to get next token
outputs = self.model(
**model_inputs,
return_dict=True,
output_attentions=False,
output_hidden_states=False,
)
next_token_logits = outputs.logits[:, -1, :]
# pre-process distribution
next_token_scores = logits_processor(input_ids,
next_token_logits)
next_token_scores = logits_warper(input_ids, next_token_scores)
# sample
probs = nn.functional.softmax(next_token_scores, dim=-1)
if do_sample:
next_tokens = torch.multinomial(
probs, num_samples=1).squeeze(1)
else:
next_tokens = torch.argmax(probs, dim=-1)
# update generated ids, model inputs,
# and length for next step
input_ids = torch.cat([input_ids, next_tokens[:, None]],
dim=-1)
model_kwargs = self.model._update_model_kwargs_for_generation( # noqa: E501
outputs,
model_kwargs,
is_encoder_decoder=False)
unfinished_sequences = unfinished_sequences.mul(
next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(
eos_token_id_tensor.unsqueeze(1)).prod(dim=0))
output_token_ids = input_ids.cpu().tolist()
for i in range(len(output_token_ids)):
output_token_ids[i] = output_token_ids[i][:][
input_length[i]:]
# Find the first occurrence of
# an EOS token in the sequence
first_eos_idx = next(
(idx
for idx, token_id in enumerate(output_token_ids[i])
if token_id in eos_token_id), None)
# If an EOS token is found, only the previous
# part of it is retained
if first_eos_idx is not None:
output_token_ids[i] = output_token_ids[
i][:first_eos_idx]
response = self.tokenizer.batch_decode(output_token_ids)
# print(response)
if not batched:
response = response[0]
yield ModelStatusCode.STREAM_ING, response, None
# stop when each sentence is finished,
# or if we exceed the maximum length
if (unfinished_sequences.max() == 0
or stopping_criteria(input_ids, scores)):
break
yield ModelStatusCode.END, response, None
def stream_chat(
self,
inputs: List[dict],
do_sample: bool = True,
**kwargs,
):
"""Return the chat completions in stream mode.
Args:
inputs (List[dict]): input messages to be completed.
do_sample (bool): do sampling if enabled
Returns:
the text/chat completion
"""
prompt = self.template_parser(inputs)
yield from self.stream_generate(prompt, do_sample, **kwargs)
class HFTransformerCasualLM(HFTransformer):
def _load_model(self, path: str, model_kwargs: dict):
import torch
from transformers import AutoModelForCausalLM
model_kwargs.setdefault('torch_dtype', torch.float16)
self.model = AutoModelForCausalLM.from_pretrained(
path, trust_remote_code=True, **model_kwargs)
self.model.eval()
class HFTransformerChat(HFTransformerCasualLM):
def __init__(self, template_parser=APITemplateParser, **kwargs):
super().__init__(template_parser=template_parser, **kwargs)
def chat(self,
inputs: Union[List[dict], List[List[dict]]],
do_sample: bool = True,
**kwargs):
"""Return the chat completions in stream mode.
Args:
inputs (Union[List[dict], List[List[dict]]]): input messages to be completed.
do_sample (bool): do sampling if enabled
Returns:
the text/chat completion
"""
# handle batch inference with vanilla for loop
if isinstance(inputs[0], list):
resps = []
for input in inputs:
resps.append(self.chat(input, do_sample, **kwargs))
return resps
prompt = self.template_parser(inputs)
query = prompt[-1]['content']
history = prompt[:-1]
try:
response, history = self.model.chat(
self.tokenizer, query, history=history)
except Exception as e:
# handle over-length input error
logger.warning(str(e))
response = ''
return response
|