minliacom
commited on
Commit
·
9420382
1
Parent(s):
1e63cc6
Add application file
Browse files- .gitignore +1 -0
- app.py +561 -0
- requirements.txt +17 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
.DS_Store
|
app.py
ADDED
@@ -0,0 +1,561 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import requests
|
3 |
+
import json
|
4 |
+
import base64
|
5 |
+
|
6 |
+
os.system('git clone https://github.com/ggerganov/whisper.cpp.git')
|
7 |
+
os.system('make -C ./whisper.cpp')
|
8 |
+
os.system('bash ./whisper.cpp/models/download-ggml-model.sh small')
|
9 |
+
os.system('bash ./whisper.cpp/models/download-ggml-model.sh base')
|
10 |
+
os.system('bash ./whisper.cpp/models/download-ggml-model.sh medium')
|
11 |
+
os.system('bash ./whisper.cpp/models/download-ggml-model.sh large')
|
12 |
+
os.system('bash ./whisper.cpp/models/download-ggml-model.sh base.en')
|
13 |
+
|
14 |
+
|
15 |
+
import gradio as gr
|
16 |
+
from pathlib import Path
|
17 |
+
import pysrt
|
18 |
+
import pandas as pd
|
19 |
+
import re
|
20 |
+
import time
|
21 |
+
|
22 |
+
from pytube import YouTube
|
23 |
+
|
24 |
+
headers = {'Authorization': os.environ['DeepL_API_KEY']}
|
25 |
+
|
26 |
+
|
27 |
+
import torch
|
28 |
+
|
29 |
+
whisper_models = ["base", "small", "medium", "large", "base.en"]
|
30 |
+
|
31 |
+
custom_models = ["belarus-small"]
|
32 |
+
|
33 |
+
combined_models = []
|
34 |
+
combined_models.extend(whisper_models)
|
35 |
+
combined_models.extend(custom_models)
|
36 |
+
|
37 |
+
|
38 |
+
LANGUAGES = {
|
39 |
+
"en": "English",
|
40 |
+
"zh": "Chinese",
|
41 |
+
"de": "German",
|
42 |
+
"es": "Spanish",
|
43 |
+
"ru": "Russian",
|
44 |
+
"ko": "Korean",
|
45 |
+
"fr": "French",
|
46 |
+
"ja": "Japanese",
|
47 |
+
"pt": "Portuguese",
|
48 |
+
"tr": "Turkish",
|
49 |
+
"pl": "Polish",
|
50 |
+
"ca": "Catalan",
|
51 |
+
"nl": "Dutch",
|
52 |
+
"ar": "Arabic",
|
53 |
+
"sv": "Swedish",
|
54 |
+
"it": "Italian",
|
55 |
+
"id": "Indonesian",
|
56 |
+
"hi": "Hindi",
|
57 |
+
"fi": "Finnish",
|
58 |
+
"vi": "Vietnamese",
|
59 |
+
"he": "Hebrew",
|
60 |
+
"uk": "Ukrainian",
|
61 |
+
"el": "Greek",
|
62 |
+
"ms": "Malay",
|
63 |
+
"cs": "Czech",
|
64 |
+
"ro": "Romanian",
|
65 |
+
"da": "Danish",
|
66 |
+
"hu": "Hungarian",
|
67 |
+
"ta": "Tamil",
|
68 |
+
"no": "Norwegian",
|
69 |
+
"th": "Thai",
|
70 |
+
"ur": "Urdu",
|
71 |
+
"hr": "Croatian",
|
72 |
+
"bg": "Bulgarian",
|
73 |
+
"lt": "Lithuanian",
|
74 |
+
"la": "Latin",
|
75 |
+
"mi": "Maori",
|
76 |
+
"ml": "Malayalam",
|
77 |
+
"cy": "Welsh",
|
78 |
+
"sk": "Slovak",
|
79 |
+
"te": "Telugu",
|
80 |
+
"fa": "Persian",
|
81 |
+
"lv": "Latvian",
|
82 |
+
"bn": "Bengali",
|
83 |
+
"sr": "Serbian",
|
84 |
+
"az": "Azerbaijani",
|
85 |
+
"sl": "Slovenian",
|
86 |
+
"kn": "Kannada",
|
87 |
+
"et": "Estonian",
|
88 |
+
"mk": "Macedonian",
|
89 |
+
"br": "Breton",
|
90 |
+
"eu": "Basque",
|
91 |
+
"is": "Icelandic",
|
92 |
+
"hy": "Armenian",
|
93 |
+
"ne": "Nepali",
|
94 |
+
"mn": "Mongolian",
|
95 |
+
"bs": "Bosnian",
|
96 |
+
"kk": "Kazakh",
|
97 |
+
"sq": "Albanian",
|
98 |
+
"sw": "Swahili",
|
99 |
+
"gl": "Galician",
|
100 |
+
"mr": "Marathi",
|
101 |
+
"pa": "Punjabi",
|
102 |
+
"si": "Sinhala",
|
103 |
+
"km": "Khmer",
|
104 |
+
"sn": "Shona",
|
105 |
+
"yo": "Yoruba",
|
106 |
+
"so": "Somali",
|
107 |
+
"af": "Afrikaans",
|
108 |
+
"oc": "Occitan",
|
109 |
+
"ka": "Georgian",
|
110 |
+
"be": "Belarusian",
|
111 |
+
"tg": "Tajik",
|
112 |
+
"sd": "Sindhi",
|
113 |
+
"gu": "Gujarati",
|
114 |
+
"am": "Amharic",
|
115 |
+
"yi": "Yiddish",
|
116 |
+
"lo": "Lao",
|
117 |
+
"uz": "Uzbek",
|
118 |
+
"fo": "Faroese",
|
119 |
+
"ht": "Haitian creole",
|
120 |
+
"ps": "Pashto",
|
121 |
+
"tk": "Turkmen",
|
122 |
+
"nn": "Nynorsk",
|
123 |
+
"mt": "Maltese",
|
124 |
+
"sa": "Sanskrit",
|
125 |
+
"lb": "Luxembourgish",
|
126 |
+
"my": "Myanmar",
|
127 |
+
"bo": "Tibetan",
|
128 |
+
"tl": "Tagalog",
|
129 |
+
"mg": "Malagasy",
|
130 |
+
"as": "Assamese",
|
131 |
+
"tt": "Tatar",
|
132 |
+
"haw": "Hawaiian",
|
133 |
+
"ln": "Lingala",
|
134 |
+
"ha": "Hausa",
|
135 |
+
"ba": "Bashkir",
|
136 |
+
"jw": "Javanese",
|
137 |
+
"su": "Sundanese",
|
138 |
+
}
|
139 |
+
|
140 |
+
# language code lookup by name, with a few language aliases
|
141 |
+
source_languages = {
|
142 |
+
**{language: code for code, language in LANGUAGES.items()},
|
143 |
+
"Burmese": "my",
|
144 |
+
"Valencian": "ca",
|
145 |
+
"Flemish": "nl",
|
146 |
+
"Haitian": "ht",
|
147 |
+
"Letzeburgesch": "lb",
|
148 |
+
"Pushto": "ps",
|
149 |
+
"Panjabi": "pa",
|
150 |
+
"Moldavian": "ro",
|
151 |
+
"Moldovan": "ro",
|
152 |
+
"Sinhalese": "si",
|
153 |
+
"Castilian": "es",
|
154 |
+
"Let the model analyze": "Let the model analyze"
|
155 |
+
}
|
156 |
+
|
157 |
+
DeepL_language_codes_for_translation = {
|
158 |
+
"Bulgarian": "BG",
|
159 |
+
"Czech": "CS",
|
160 |
+
"Danish": "DA",
|
161 |
+
"German": "DE",
|
162 |
+
"Greek": "EL",
|
163 |
+
"English": "EN",
|
164 |
+
"Spanish": "ES",
|
165 |
+
"Estonian": "ET",
|
166 |
+
"Finnish": "FI",
|
167 |
+
"French": "FR",
|
168 |
+
"Hungarian": "HU",
|
169 |
+
"Indonesian": "ID",
|
170 |
+
"Italian": "IT",
|
171 |
+
"Japanese": "JA",
|
172 |
+
"Lithuanian": "LT",
|
173 |
+
"Latvian": "LV",
|
174 |
+
"Dutch": "NL",
|
175 |
+
"Polish": "PL",
|
176 |
+
"Portuguese": "PT",
|
177 |
+
"Romanian": "RO",
|
178 |
+
"Russian": "RU",
|
179 |
+
"Slovak": "SK",
|
180 |
+
"Slovenian": "SL",
|
181 |
+
"Swedish": "SV",
|
182 |
+
"Turkish": "TR",
|
183 |
+
"Ukrainian": "UK",
|
184 |
+
"Chinese": "ZH"
|
185 |
+
}
|
186 |
+
|
187 |
+
|
188 |
+
transcribe_options = dict(beam_size=3, best_of=3, without_timestamps=False)
|
189 |
+
|
190 |
+
|
191 |
+
source_language_list = [key[0] for key in source_languages.items()]
|
192 |
+
translation_models_list = [key[0] for key in DeepL_language_codes_for_translation.items()]
|
193 |
+
|
194 |
+
|
195 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
196 |
+
print("DEVICE IS: ")
|
197 |
+
print(device)
|
198 |
+
|
199 |
+
videos_out_path = Path("./videos_out")
|
200 |
+
videos_out_path.mkdir(parents=True, exist_ok=True)
|
201 |
+
|
202 |
+
|
203 |
+
def get_youtube(video_url):
|
204 |
+
yt = YouTube(video_url)
|
205 |
+
abs_video_path = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download()
|
206 |
+
print("LADATATTU POLKUUN")
|
207 |
+
print(abs_video_path)
|
208 |
+
|
209 |
+
|
210 |
+
return abs_video_path
|
211 |
+
|
212 |
+
def speech_to_text(video_file_path, selected_source_lang, whisper_model):
|
213 |
+
"""
|
214 |
+
# Youtube with translated subtitles using OpenAI Whisper and Opus-MT models.
|
215 |
+
# Currently supports only English audio
|
216 |
+
This space allows you to:
|
217 |
+
1. Download youtube video with a given url
|
218 |
+
2. Watch it in the first video component
|
219 |
+
3. Run automatic speech recognition on the video using fast Whisper models
|
220 |
+
4. Translate the recognized transcriptions to 26 languages supported by deepL
|
221 |
+
5. Download generated subtitles in .vtt and .srt formats
|
222 |
+
6. Watch the the original video with generated subtitles
|
223 |
+
|
224 |
+
Speech Recognition is based on models from OpenAI Whisper https://github.com/openai/whisper
|
225 |
+
This space is using c++ implementation by https://github.com/ggerganov/whisper.cpp
|
226 |
+
"""
|
227 |
+
|
228 |
+
if(video_file_path == None):
|
229 |
+
raise ValueError("Error no video input")
|
230 |
+
print(video_file_path)
|
231 |
+
try:
|
232 |
+
_,file_ending = os.path.splitext(f'{video_file_path}')
|
233 |
+
print(f'file enging is {file_ending}')
|
234 |
+
print("starting conversion to wav")
|
235 |
+
os.system(f'ffmpeg -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{video_file_path.replace(file_ending, ".wav")}"')
|
236 |
+
print("conversion to wav ready")
|
237 |
+
|
238 |
+
|
239 |
+
|
240 |
+
print("starting whisper c++")
|
241 |
+
srt_path = str(video_file_path.replace(file_ending, ".wav")) + ".srt"
|
242 |
+
os.system(f'rm -f {srt_path}')
|
243 |
+
if selected_source_lang == "Let the model analyze":
|
244 |
+
os.system(f'./whisper.cpp/main "{video_file_path.replace(file_ending, ".wav")}" -t 4 -l "auto" -m ./whisper.cpp/models/ggml-{whisper_model}.bin -osrt')
|
245 |
+
else:
|
246 |
+
if whisper_model in custom_models:
|
247 |
+
os.system(f'./whisper.cpp/main "{video_file_path.replace(file_ending, ".wav")}" -t 4 -l {source_languages.get(selected_source_lang)} -m ./converted_models/ggml-{whisper_model}.bin -osrt')
|
248 |
+
else:
|
249 |
+
os.system(f'./whisper.cpp/main "{video_file_path.replace(file_ending, ".wav")}" -t 4 -l {source_languages.get(selected_source_lang)} -m ./whisper.cpp/models/ggml-{whisper_model}.bin -osrt')
|
250 |
+
print("starting whisper done with whisper")
|
251 |
+
except Exception as e:
|
252 |
+
raise RuntimeError("Error converting video to audio")
|
253 |
+
|
254 |
+
try:
|
255 |
+
|
256 |
+
df = pd.DataFrame(columns = ['start','end','text'])
|
257 |
+
srt_path = str(video_file_path.replace(file_ending, ".wav")) + ".srt"
|
258 |
+
subs = pysrt.open(srt_path)
|
259 |
+
|
260 |
+
|
261 |
+
objects = []
|
262 |
+
for sub in subs:
|
263 |
+
|
264 |
+
|
265 |
+
start_hours = str(str(sub.start.hours) + "00")[0:2] if len(str(sub.start.hours)) == 2 else str("0" + str(sub.start.hours) + "00")[0:2]
|
266 |
+
end_hours = str(str(sub.end.hours) + "00")[0:2] if len(str(sub.end.hours)) == 2 else str("0" + str(sub.end.hours) + "00")[0:2]
|
267 |
+
|
268 |
+
start_minutes = str(str(sub.start.minutes) + "00")[0:2] if len(str(sub.start.minutes)) == 2 else str("0" + str(sub.start.minutes) + "00")[0:2]
|
269 |
+
end_minutes = str(str(sub.end.minutes) + "00")[0:2] if len(str(sub.end.minutes)) == 2 else str("0" + str(sub.end.minutes) + "00")[0:2]
|
270 |
+
|
271 |
+
start_seconds = str(str(sub.start.seconds) + "00")[0:2] if len(str(sub.start.seconds)) == 2 else str("0" + str(sub.start.seconds) + "00")[0:2]
|
272 |
+
end_seconds = str(str(sub.end.seconds) + "00")[0:2] if len(str(sub.end.seconds)) == 2 else str("0" + str(sub.end.seconds) + "00")[0:2]
|
273 |
+
|
274 |
+
start_millis = str(str(sub.start.milliseconds) + "000")[0:3]
|
275 |
+
end_millis = str(str(sub.end.milliseconds) + "000")[0:3]
|
276 |
+
objects.append([sub.text, f'{start_hours}:{start_minutes}:{start_seconds}.{start_millis}', f'{end_hours}:{end_minutes}:{end_seconds}.{end_millis}'])
|
277 |
+
|
278 |
+
for object in objects:
|
279 |
+
srt_to_df = {
|
280 |
+
'start': [object[1]],
|
281 |
+
'end': [object[2]],
|
282 |
+
'text': [object[0]]
|
283 |
+
}
|
284 |
+
|
285 |
+
df = pd.concat([df, pd.DataFrame(srt_to_df)])
|
286 |
+
|
287 |
+
|
288 |
+
return df
|
289 |
+
|
290 |
+
except Exception as e:
|
291 |
+
raise RuntimeError("Error Running inference with local model", e)
|
292 |
+
|
293 |
+
|
294 |
+
def translate_transcriptions(df, selected_translation_lang_2):
|
295 |
+
if selected_translation_lang_2 is None:
|
296 |
+
selected_translation_lang_2 = 'English'
|
297 |
+
df.reset_index(inplace=True)
|
298 |
+
|
299 |
+
print("start_translation")
|
300 |
+
translations = []
|
301 |
+
|
302 |
+
|
303 |
+
|
304 |
+
text_combined = ""
|
305 |
+
for i, sentence in enumerate(df['text']):
|
306 |
+
if i == 0:
|
307 |
+
text_combined = sentence
|
308 |
+
else:
|
309 |
+
text_combined = text_combined + '\n' + sentence
|
310 |
+
|
311 |
+
data = {'text': text_combined,
|
312 |
+
'tag_spitting': 'xml',
|
313 |
+
'target_lang': DeepL_language_codes_for_translation.get(selected_translation_lang_2)
|
314 |
+
}
|
315 |
+
try:
|
316 |
+
|
317 |
+
usage = requests.get('https://api-free.deepl.com/v2/usage', headers=headers)
|
318 |
+
usage = json.loads(usage.text)
|
319 |
+
try:
|
320 |
+
print('Usage is at: ' + str(usage['character_count']) + 'characters')
|
321 |
+
except Exception as e:
|
322 |
+
print(e)
|
323 |
+
|
324 |
+
if usage['character_count'] >= 490000:
|
325 |
+
print("USAGE CLOSE TO LIMIT")
|
326 |
+
|
327 |
+
response = requests.post('https://api-free.deepl.com/v2/translate', headers=headers, data=data)
|
328 |
+
|
329 |
+
# Print the response from the server
|
330 |
+
translated_sentences = json.loads(response.text)
|
331 |
+
translated_sentences = translated_sentences['translations'][0]['text'].split('\n')
|
332 |
+
df['translation'] = translated_sentences
|
333 |
+
except Exception as e:
|
334 |
+
print("EXCEPTION WITH DEEPL API")
|
335 |
+
print(e)
|
336 |
+
df['translation'] = df['text']
|
337 |
+
|
338 |
+
print("translations done")
|
339 |
+
|
340 |
+
print("Starting SRT-file creation")
|
341 |
+
print(df.head())
|
342 |
+
df.reset_index(inplace=True)
|
343 |
+
with open('subtitles.vtt','w', encoding="utf-8") as file:
|
344 |
+
print("Starting WEBVTT-file creation")
|
345 |
+
|
346 |
+
for i in range(len(df)):
|
347 |
+
if i == 0:
|
348 |
+
file.write('WEBVTT')
|
349 |
+
file.write('\n')
|
350 |
+
|
351 |
+
else:
|
352 |
+
file.write(str(i+1))
|
353 |
+
file.write('\n')
|
354 |
+
start = df.iloc[i]['start']
|
355 |
+
|
356 |
+
|
357 |
+
file.write(f"{start.strip()}")
|
358 |
+
|
359 |
+
stop = df.iloc[i]['end']
|
360 |
+
|
361 |
+
|
362 |
+
file.write(' --> ')
|
363 |
+
file.write(f"{stop}")
|
364 |
+
file.write('\n')
|
365 |
+
file.writelines(df.iloc[i]['translation'])
|
366 |
+
if int(i) != len(df)-1:
|
367 |
+
file.write('\n\n')
|
368 |
+
|
369 |
+
print("WEBVTT DONE")
|
370 |
+
|
371 |
+
with open('subtitles.srt','w', encoding="utf-8") as file:
|
372 |
+
print("Starting SRT-file creation")
|
373 |
+
|
374 |
+
for i in range(len(df)):
|
375 |
+
file.write(str(i+1))
|
376 |
+
file.write('\n')
|
377 |
+
start = df.iloc[i]['start']
|
378 |
+
|
379 |
+
|
380 |
+
file.write(f"{start.strip()}")
|
381 |
+
|
382 |
+
stop = df.iloc[i]['end']
|
383 |
+
|
384 |
+
|
385 |
+
file.write(' --> ')
|
386 |
+
file.write(f"{stop}")
|
387 |
+
file.write('\n')
|
388 |
+
file.writelines(df.iloc[i]['translation'])
|
389 |
+
if int(i) != len(df)-1:
|
390 |
+
file.write('\n\n')
|
391 |
+
|
392 |
+
print("SRT DONE")
|
393 |
+
subtitle_files = ['subtitles.vtt','subtitles.srt']
|
394 |
+
|
395 |
+
return df, subtitle_files
|
396 |
+
|
397 |
+
# def burn_srt_to_video(srt_file, video_in):
|
398 |
+
|
399 |
+
# print("Starting creation of video wit srt")
|
400 |
+
|
401 |
+
# try:
|
402 |
+
# video_out = video_in.replace('.mp4', '_out.mp4')
|
403 |
+
# print(os.system('ls -lrth'))
|
404 |
+
# print(video_in)
|
405 |
+
# print(video_out)
|
406 |
+
# command = 'ffmpeg -i "{}" -y -vf subtitles=./subtitles.srt "{}"'.format(video_in, video_out)
|
407 |
+
# os.system(command)
|
408 |
+
|
409 |
+
# return video_out
|
410 |
+
|
411 |
+
# except Exception as e:
|
412 |
+
# print(e)
|
413 |
+
# return video_out
|
414 |
+
|
415 |
+
def create_video_player(subtitle_files, video_in):
|
416 |
+
|
417 |
+
with open(video_in, "rb") as file:
|
418 |
+
video_base64 = base64.b64encode(file.read())
|
419 |
+
with open('./subtitles.vtt', "rb") as file:
|
420 |
+
subtitle_base64 = base64.b64encode(file.read())
|
421 |
+
|
422 |
+
video_player = f'''<video id="video" controls preload="metadata">
|
423 |
+
<source src="data:video/mp4;base64,{str(video_base64)[2:-1]}" type="video/mp4" />
|
424 |
+
<track
|
425 |
+
label="English"
|
426 |
+
kind="subtitles"
|
427 |
+
srclang="en"
|
428 |
+
src="data:text/vtt;base64,{str(subtitle_base64)[2:-1]}"
|
429 |
+
default />
|
430 |
+
</video>
|
431 |
+
'''
|
432 |
+
#video_player = gr.HTML(video_player)
|
433 |
+
return video_player
|
434 |
+
|
435 |
+
|
436 |
+
|
437 |
+
|
438 |
+
# ---- Gradio Layout -----
|
439 |
+
video_in = gr.Video(label="Video file", mirror_webcam=False)
|
440 |
+
youtube_url_in = gr.Textbox(label="Youtube url", lines=1, interactive=True)
|
441 |
+
video_out = gr.Video(label="Video Out", mirror_webcam=False)
|
442 |
+
|
443 |
+
|
444 |
+
|
445 |
+
df_init = pd.DataFrame(columns=['start','end','text', 'translation'])
|
446 |
+
|
447 |
+
selected_source_lang = gr.Dropdown(choices=source_language_list, type="value", value="Let the model analyze", label="Spoken language in video", interactive=True)
|
448 |
+
selected_translation_lang_2 = gr.Dropdown(choices=translation_models_list, type="value", value="English", label="In which language you want the transcriptions?", interactive=True)
|
449 |
+
selected_whisper_model = gr.Dropdown(choices=whisper_models, type="value", value="base", label="Selected Whisper model", interactive=True)
|
450 |
+
|
451 |
+
transcription_df = gr.DataFrame(value=df_init,label="Transcription dataframe", row_count=(0, "dynamic"), max_rows = 10, wrap=True, overflow_row_behaviour='paginate')
|
452 |
+
transcription_and_translation_df = gr.DataFrame(value=df_init,label="Transcription and translation dataframe", max_rows = 10, wrap=True, overflow_row_behaviour='paginate')
|
453 |
+
|
454 |
+
subtitle_files = gr.File(
|
455 |
+
label="Download srt-file",
|
456 |
+
file_count="multiple",
|
457 |
+
type="file",
|
458 |
+
interactive=False,
|
459 |
+
)
|
460 |
+
|
461 |
+
video_player = gr.HTML('<p>video will be played here after you press the button at step 4')
|
462 |
+
|
463 |
+
|
464 |
+
demo = gr.Blocks(css='''
|
465 |
+
#cut_btn, #reset_btn { align-self:stretch; }
|
466 |
+
#\\31 3 { max-width: 540px; }
|
467 |
+
.output-markdown {max-width: 65ch !important;}
|
468 |
+
''')
|
469 |
+
demo.encrypt = False
|
470 |
+
with demo:
|
471 |
+
transcription_var = gr.Variable()
|
472 |
+
|
473 |
+
with gr.Row():
|
474 |
+
with gr.Column():
|
475 |
+
gr.Markdown('''
|
476 |
+
### This space allows you to:
|
477 |
+
1. Download youtube video with a given url
|
478 |
+
2. Watch it in the first video component
|
479 |
+
3. Run automatic speech recognition on the video using fast Whisper models
|
480 |
+
4. Translate the recognized transcriptions to 26 languages supported by deepL
|
481 |
+
5. Download generated subtitles in .vtt and .srt formats
|
482 |
+
6. Watch the the original video with generated subtitles
|
483 |
+
''')
|
484 |
+
|
485 |
+
with gr.Column():
|
486 |
+
gr.Markdown('''
|
487 |
+
### 1. Copy any Youtube video URL to box below
|
488 |
+
(But please **consider using short videos** so others won't get queued) or click one of the examples and then press button "1. Download Youtube video"-button:
|
489 |
+
''')
|
490 |
+
examples = gr.Examples(examples=
|
491 |
+
[ "https://www.youtube.com/watch?v=nlMuHtV82q8&ab_channel=NothingforSale24",
|
492 |
+
"https://www.youtube.com/watch?v=JzPfMbG1vrE&ab_channel=ExplainerVideosByLauren",
|
493 |
+
"https://www.youtube.com/watch?v=S68vvV0kod8&ab_channel=Pearl-CohnTelevision"],
|
494 |
+
label="Examples", inputs=[youtube_url_in])
|
495 |
+
# Inspiration from https://huggingface.co/spaces/vumichien/whisper-speaker-diarization
|
496 |
+
|
497 |
+
with gr.Row():
|
498 |
+
with gr.Column():
|
499 |
+
youtube_url_in.render()
|
500 |
+
download_youtube_btn = gr.Button("Step 1. Download Youtube video")
|
501 |
+
download_youtube_btn.click(get_youtube, [youtube_url_in], [
|
502 |
+
video_in])
|
503 |
+
print(video_in)
|
504 |
+
|
505 |
+
|
506 |
+
with gr.Row():
|
507 |
+
with gr.Column():
|
508 |
+
video_in.render()
|
509 |
+
with gr.Column():
|
510 |
+
gr.Markdown('''
|
511 |
+
##### Here you can start the transcription and translation process.
|
512 |
+
##### Be aware that processing will last some time. With base model it is around 3x speed
|
513 |
+
##### **Please select source language** for better transcriptions. Using 'Let the model analyze' makes mistakes sometimes and may lead to bad transcriptions
|
514 |
+
''')
|
515 |
+
selected_source_lang.render()
|
516 |
+
selected_whisper_model.render()
|
517 |
+
transcribe_btn = gr.Button("Step 2. Transcribe audio")
|
518 |
+
transcribe_btn.click(speech_to_text, [video_in, selected_source_lang, selected_whisper_model], transcription_df)
|
519 |
+
|
520 |
+
|
521 |
+
with gr.Row():
|
522 |
+
gr.Markdown('''
|
523 |
+
##### Here you will get transcription output
|
524 |
+
##### ''')
|
525 |
+
|
526 |
+
with gr.Row():
|
527 |
+
with gr.Column():
|
528 |
+
transcription_df.render()
|
529 |
+
|
530 |
+
with gr.Row():
|
531 |
+
with gr.Column():
|
532 |
+
gr.Markdown('''
|
533 |
+
##### PLEASE READ BELOW
|
534 |
+
Here you will can translate transcriptions to 26 languages.
|
535 |
+
If spoken language is not in the list, translation might not work. In this case original transcriptions are used
|
536 |
+
''')
|
537 |
+
selected_translation_lang_2.render()
|
538 |
+
translate_transcriptions_button = gr.Button("Step 3. Translate transcription")
|
539 |
+
translate_transcriptions_button.click(translate_transcriptions, [transcription_df, selected_translation_lang_2], [transcription_and_translation_df, subtitle_files])
|
540 |
+
transcription_and_translation_df.render()
|
541 |
+
|
542 |
+
with gr.Row():
|
543 |
+
with gr.Column():
|
544 |
+
gr.Markdown('''##### From here you can download subtitles in .srt or .vtt format''')
|
545 |
+
subtitle_files.render()
|
546 |
+
|
547 |
+
with gr.Row():
|
548 |
+
with gr.Column():
|
549 |
+
gr.Markdown('''
|
550 |
+
##### Now press the Step 4. Button to create output video with translated transcriptions
|
551 |
+
##### ''')
|
552 |
+
create_video_button = gr.Button("Step 4. Create and add subtitles to video")
|
553 |
+
print(video_in)
|
554 |
+
create_video_button.click(create_video_player, [subtitle_files,video_in], [
|
555 |
+
video_player])
|
556 |
+
video_player.render()
|
557 |
+
|
558 |
+
|
559 |
+
|
560 |
+
|
561 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==3.12
|
2 |
+
ffmpeg-python
|
3 |
+
pandas==1.5.0
|
4 |
+
pytube==12.1.0
|
5 |
+
sacremoses
|
6 |
+
sentencepiece
|
7 |
+
tokenizers
|
8 |
+
torch
|
9 |
+
torchaudio
|
10 |
+
tqdm==4.64.1
|
11 |
+
EasyNMT==2.0.2
|
12 |
+
tqdm
|
13 |
+
nltk
|
14 |
+
transformers
|
15 |
+
pysrt
|
16 |
+
psutil==5.9.2
|
17 |
+
requests
|