Update app.py
Browse files
app.py
CHANGED
@@ -3,12 +3,17 @@ from pydantic import BaseModel
|
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
import torch
|
5 |
|
|
|
6 |
app = FastAPI()
|
7 |
|
8 |
# Load your fine-tuned model and tokenizer
|
9 |
-
MODEL_NAME = "aubmindlab/aragpt2-medium"
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
12 |
|
13 |
# Define the general prompt template
|
14 |
general_prompt_template = """
|
@@ -48,33 +53,37 @@ def generate_text(request: GenerateRequest):
|
|
48 |
المادة = request.المادة
|
49 |
المستوى = request.المستوى
|
50 |
|
51 |
-
if not المادة or not
|
52 |
-
raise HTTPException(status_code=400, detail="المادة والمستوى
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
|
55 |
-
|
56 |
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
outputs = model.generate(
|
63 |
-
inputs.input_ids,
|
64 |
-
max_length=300, # Adjust as needed
|
65 |
-
num_return_sequences=1,
|
66 |
-
temperature=0.1, # Adjust for creativity
|
67 |
-
top_p=0.9, # Adjust for diversity
|
68 |
-
do_sample=True,
|
69 |
-
)
|
70 |
|
71 |
-
|
72 |
-
|
73 |
|
74 |
-
|
75 |
-
generated_text = generated_text.replace(arabic_prompt, "").strip()
|
76 |
|
77 |
-
|
|
|
78 |
|
79 |
@app.get("/")
|
80 |
def read_root():
|
|
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
import torch
|
5 |
|
6 |
+
|
7 |
app = FastAPI()
|
8 |
|
9 |
# Load your fine-tuned model and tokenizer
|
10 |
+
MODEL_NAME = "aubmindlab/aragpt2-medium"
|
11 |
+
|
12 |
+
try:
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
14 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
15 |
+
except Exception as e:
|
16 |
+
raise RuntimeError(f"Failed to load model or tokenizer: {str(e)}")
|
17 |
|
18 |
# Define the general prompt template
|
19 |
general_prompt_template = """
|
|
|
53 |
المادة = request.المادة
|
54 |
المستوى = request.المستوى
|
55 |
|
56 |
+
if not المادة or not المستوى or not isinstance(المادة, str) or not isinstance(المستوى, str):
|
57 |
+
raise HTTPException(status_code=400, detail="المادة والمستوى مطلوبان ويجب أن يكونا نصًا.")
|
58 |
+
|
59 |
+
try:
|
60 |
+
# Format the prompt with user inputs
|
61 |
+
arabic_prompt = general_prompt_template.format(المادة=المادة, المستوى=المستوى)
|
62 |
|
63 |
+
# Tokenize the prompt
|
64 |
+
inputs = tokenizer(arabic_prompt, return_tensors="pt", max_length=512, truncation=True)
|
65 |
|
66 |
+
# Generate text
|
67 |
+
with torch.no_grad():
|
68 |
+
outputs = model.generate(
|
69 |
+
inputs.input_ids,
|
70 |
+
max_length=300,
|
71 |
+
num_return_sequences=1,
|
72 |
+
temperature=0.1,
|
73 |
+
top_p=0.9,
|
74 |
+
do_sample=True,
|
75 |
+
)
|
76 |
|
77 |
+
# Decode the generated text
|
78 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
# Remove the prompt from the generated text
|
81 |
+
generated_text = generated_text.replace(arabic_prompt, "").strip()
|
82 |
|
83 |
+
return {"generated_text": generated_text}
|
|
|
84 |
|
85 |
+
except Exception as e:
|
86 |
+
raise HTTPException(status_code=500, detail=f"Error during text generation: {str(e)}")
|
87 |
|
88 |
@app.get("/")
|
89 |
def read_root():
|