Spaces:
Running
Running
File size: 6,076 Bytes
089b3d5 5270826 206e6f2 089b3d5 168e3f1 84b8f07 61b9726 6190870 40d9df7 9bb64d1 089b3d5 f065c65 d0d9591 089b3d5 61b9726 089b3d5 9bb64d1 089b3d5 61b9726 089b3d5 0c29c4f 40d9df7 94b4713 e08ac94 94b4713 b753a99 94b4713 40d9df7 61b9726 089b3d5 cdb768d 089b3d5 8f2d0ff d0d9591 a5233d6 9bb64d1 a5233d6 09b8e8a a5233d6 b753a99 9bb64d1 5270826 cdb768d 089b3d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
from fastapi import APIRouter, Depends
from fastapi.responses import StreamingResponse
from PIL import Image, ImageEnhance
from fastapi import HTTPException
import io
import requests
import os
from dotenv import load_dotenv
from pydantic import BaseModel
from pymongo import MongoClient
from models import *
from huggingface_hub import InferenceClient
from fastapi import UploadFile, File
from fastapi.responses import JSONResponse, FileResponse
import uuid
from RyuzakiLib import GeminiLatest
class FluxAI(BaseModel):
user_id: int
args: str
auto_enhancer: bool = False
class MistralAI(BaseModel):
args: str
router = APIRouter()
load_dotenv()
MONGO_URL = os.environ["MONGO_URL"]
HUGGING_TOKEN = os.environ["HUGGING_TOKEN"]
GOOGLE_API_KEY = os.environ["GOOGLE_API_KEY"]
client_mongo = MongoClient(MONGO_URL)
db = client_mongo["tiktokbot"]
collection = db["users"]
async def schellwithflux(args):
API_URL = "/static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fmodels%2Fblack-forest-labs%2FFLUX.1-schnell%26quot%3B%3C%2Fspan%3E
headers = {"Authorization": f"Bearer {HUGGING_TOKEN}"}
payload = {"inputs": args}
response = requests.post(API_URL, headers=headers, json=payload)
if response.status_code != 200:
print(f"Error status {response.status_code}")
return None
return response.content
async def mistralai_post_message(message_str):
client = InferenceClient(
"mistralai/Mixtral-8x7B-Instruct-v0.1",
token=HUGGING_TOKEN
)
output = ""
for message in client.chat_completion(
messages=[{"role": "user", "content": message_str}],
max_tokens=500,
stream=True
):
output += message.choices[0].delta.content
return output
def get_user_tokens_gpt(user_id):
user = collection.find_one({"user_id": user_id})
if not user:
return 0
return user.get("tokens", 0)
def deduct_tokens_gpt(user_id, amount):
tokens = get_user_tokens_gpt(user_id)
if tokens >= amount:
collection.update_one(
{"user_id": user_id},
{"$inc": {"tokens": -amount}}
)
return True
else:
return False
UPLOAD_DIRECTORY = "./uploads"
@router.post("/uploadfile/")
async def upload_file(file: UploadFile = File(...)):
try:
ext = file.filename.split(".")[-1]
unique_filename = f"{uuid.uuid4().hex}.{ext}"
file_location = os.path.join(UPLOAD_DIRECTORY, unique_filename)
with open(file_location, "wb") as f:
f.write(await file.read())
return JSONResponse(
status_code=200,
content={"url": f"https://randydev-ryuzaki-api.hf.space/api/v1/uploads/{unique_filename}"}
)
except Exception as e:
return JSONResponse(
status_code=500,
content={"error": str(e)}
)
@router.get("/uploads/{filename}")
async def serve_file(filename: str):
file_location = os.path.join(UPLOAD_DIRECTORY, filename)
if os.path.exists(file_location):
return FileResponse(file_location)
return JSONResponse(
status_code=404,
content={"error": "File not found"}
)
@router.post("/akeno/mistralai", response_model=SuccessResponse, responses={422: {"model": SuccessResponse}})
async def mistralai_(payload: MistralAI):
try:
response = await mistralai_post_message(payload.args)
return SuccessResponse(
status="True",
randydev={"message": response}
)
except Exception as e:
return SuccessResponse(
status="False",
randydev={"error": f"An error occurred: {str(e)}"}
)
@router.post("/akeno/fluxai", response_model=SuccessResponse, responses={422: {"model": SuccessResponse}})
async def fluxai_image(payload: FluxAI):
if deduct_tokens_gpt(payload.user_id, amount=20):
try:
image_bytes = await schellwithflux(payload.args)
if image_bytes is None:
return SuccessResponse(
status="False",
randydev={"error": "Failed to generate an image"}
)
if payload.auto_enhancer:
with Image.open(io.BytesIO(image_bytes)) as image:
enhancer = ImageEnhance.Sharpness(image)
image = enhancer.enhance(1.5)
enhancer = ImageEnhance.Contrast(image)
image = enhancer.enhance(1.2)
enhancer = ImageEnhance.Color(image)
image = enhancer.enhance(1.1)
enhanced_image_bytes = io.BytesIO()
image.save(enhanced_image_bytes, format="JPEG", quality=95)
enhanced_image_bytes.seek(0)
file_path = "test.jpg"
with open(file_path, "wb") as f:
f.write(enhanced_image_bytes.getvalue())
url = "https://randydev-ryuzaki-api.hf.space/api/v1/uploadfile/"
files = {"file": open(file_path, "rb")}
response_uploaded = requests.post(url, files=files).json()
url = response_uploaded.get("url")
example_test = "Explain how this picture looks like."
x = GeminiLatest(api_keys=GOOGLE_API_KEY)
response = x.get_response_image(example_test, file_path)
return SuccessResponse(
status="True",
randydev={"url": url, "caption": response}
)
else:
return StreamingResponse(io.BytesIO(image_bytes), media_type="image/jpeg")
except Exception as e:
return SuccessResponse(
status="False",
randydev={"error": f"An error occurred: {str(e)}"}
)
else:
tokens = get_user_tokens_gpt(payload.user_id)
return SuccessResponse(
status="False",
randydev={"error": f"Not enough tokens. Current tokens: {tokens}. Please support @xtdevs"}
)
|