Upload app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,20 @@ import sys
|
|
2 |
import time
|
3 |
import warnings
|
4 |
from pathlib import Path
|
|
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
# 配置hugface环境
|
8 |
from huggingface_hub import hf_hub_download
|
@@ -12,8 +25,34 @@ import glob
|
|
12 |
import json
|
13 |
|
14 |
# os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
|
19 |
def instruct_generate(
|
@@ -42,17 +81,39 @@ def instruct_generate(
|
|
42 |
top_k: The number of top most probable tokens to consider in the sampling process.
|
43 |
temperature: A value controlling the randomness of the sampling process. Higher values result in more random
|
44 |
"""
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
print(output)
|
47 |
return output
|
48 |
|
49 |
# 配置具体参数
|
50 |
-
|
|
|
|
|
|
|
|
|
51 |
example_path = "example.json"
|
52 |
# 1024如果不够, 调整为512
|
53 |
max_seq_len = 1024
|
54 |
max_batch_size = 1
|
55 |
|
|
|
|
|
56 |
with open(example_path, 'r') as f:
|
57 |
content = f.read()
|
58 |
example_dict = json.loads(content)
|
|
|
2 |
import time
|
3 |
import warnings
|
4 |
from pathlib import Path
|
5 |
+
from typing import Optional
|
6 |
|
7 |
+
import lightning as L
|
8 |
+
import torch
|
9 |
+
|
10 |
+
# support running without installing as a package
|
11 |
+
wd = Path(__file__).parent.parent.resolve()
|
12 |
+
sys.path.append(str(wd))
|
13 |
+
|
14 |
+
from generate import generate
|
15 |
+
from lit_llama import Tokenizer
|
16 |
+
from lit_llama.adapter import LLaMA
|
17 |
+
from lit_llama.utils import EmptyInitOnDevice, lazy_load, llama_model_lookup
|
18 |
+
from scripts.prepare_alpaca import generate_prompt
|
19 |
|
20 |
# 配置hugface环境
|
21 |
from huggingface_hub import hf_hub_download
|
|
|
25 |
import json
|
26 |
|
27 |
# os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
|
28 |
+
torch.set_float32_matmul_precision("high")
|
29 |
+
|
30 |
+
def model_load(
|
31 |
+
adapter_path: Path = Path("out/adapter/alpaca/lit-llama-adapter-finetuned_15k.pth"),
|
32 |
+
pretrained_path: Path = Path("checkpoints/lit-llama/7B/lit-llama.pth"),
|
33 |
+
quantize: Optional[str] = "llm.int8",
|
34 |
+
):
|
35 |
+
|
36 |
+
fabric = L.Fabric(devices=1)
|
37 |
+
dtype = torch.bfloat16 if fabric.device.type == "cuda" and torch.cuda.is_bf16_supported() else torch.float32
|
38 |
+
|
39 |
+
with lazy_load(pretrained_path) as pretrained_checkpoint, lazy_load(adapter_path) as adapter_checkpoint:
|
40 |
+
name = llama_model_lookup(pretrained_checkpoint)
|
41 |
|
42 |
+
with EmptyInitOnDevice(
|
43 |
+
device=fabric.device, dtype=dtype, quantization_mode=quantize
|
44 |
+
):
|
45 |
+
model = LLaMA.from_name(name)
|
46 |
+
|
47 |
+
# 1. Load the pretrained weights
|
48 |
+
model.load_state_dict(pretrained_checkpoint, strict=False)
|
49 |
+
# 2. Load the fine-tuned adapter weights
|
50 |
+
model.load_state_dict(adapter_checkpoint, strict=False)
|
51 |
+
|
52 |
+
model.eval()
|
53 |
+
model = fabric.setup_module(model)
|
54 |
+
|
55 |
+
return model
|
56 |
|
57 |
|
58 |
def instruct_generate(
|
|
|
81 |
top_k: The number of top most probable tokens to consider in the sampling process.
|
82 |
temperature: A value controlling the randomness of the sampling process. Higher values result in more random
|
83 |
"""
|
84 |
+
sample = {"instruction": prompt, "input": input}
|
85 |
+
prompt = generate_prompt(sample)
|
86 |
+
encoded = tokenizer.encode(prompt, bos=True, eos=False, device=model.device)
|
87 |
+
# prompt_length = encoded.size(0)
|
88 |
+
|
89 |
+
y = generate(
|
90 |
+
model,
|
91 |
+
idx=encoded,
|
92 |
+
max_seq_length=max_new_tokens,
|
93 |
+
max_new_tokens=max_new_tokens,
|
94 |
+
temperature=temperature,
|
95 |
+
top_k=top_k,
|
96 |
+
eos_id=tokenizer.eos_id
|
97 |
+
)
|
98 |
+
|
99 |
+
output = tokenizer.decode(y)
|
100 |
+
output = output.split("### Response:")[1].strip()
|
101 |
print(output)
|
102 |
return output
|
103 |
|
104 |
# 配置具体参数
|
105 |
+
pretrained_path = hf_hub_download(
|
106 |
+
repo_id="xxw/tapa_model", filename="lit-llama.pth")
|
107 |
+
tokenizer_path = hf_hub_download(
|
108 |
+
repo_id="xxw/tapa_model", filename="tokenizer.model")
|
109 |
+
adapter_path = "lit-llama-adapter-finetuned_15k.pth"
|
110 |
example_path = "example.json"
|
111 |
# 1024如果不够, 调整为512
|
112 |
max_seq_len = 1024
|
113 |
max_batch_size = 1
|
114 |
|
115 |
+
model = model_load(adapter_path, pretrained_path)
|
116 |
+
tokenizer = Tokenizer(tokenizer_path)
|
117 |
with open(example_path, 'r') as f:
|
118 |
content = f.read()
|
119 |
example_dict = json.loads(content)
|