File size: 5,114 Bytes
7d52396 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
"""Implementation derived from https://github.com/tloen/alpaca-lora"""
import sys
from pathlib import Path
# support running without installing as a package
wd = Path(__file__).parent.parent.resolve()
sys.path.append(str(wd))
import torch
import requests
import json
from torch.utils.data import random_split
from lit_llama.tokenizer import Tokenizer
from tqdm import tqdm
DATA_FILE = "https://raw.githubusercontent.com/tloen/alpaca-lora/main/alpaca_data_cleaned_archive.json"
DATA_FILE_NAME = "alpaca_data_cleaned_archive.json"
IGNORE_INDEX = -1
def prepare(
destination_path: Path = Path("data/alpaca"),
tokenizer_path: Path = Path("checkpoints/lit-llama/tokenizer.model"),
test_split_size: int = 2000,
max_seq_length: int = 256,
seed: int = 42,
mask_inputs: bool = False, # as in alpaca-lora
data_file_name: str = DATA_FILE_NAME
) -> None:
"""Prepare the Alpaca dataset for instruction tuning.
The output is a training and validation dataset saved as `train.pt` and `val.pt`,
which stores the preprocessed and tokenized prompts and labels.
"""
destination_path.mkdir(parents=True, exist_ok=True)
file_path = destination_path / data_file_name
download(file_path)
# TODO: If we don't have the Meta weights, where do we get the tokenizer from?
tokenizer = Tokenizer(tokenizer_path)
with open(file_path, "r") as file:
data = json.load(file)
# Partition the dataset into train and test
train_split_size = len(data) - test_split_size
train_set, test_set = random_split(
data,
lengths=(train_split_size, test_split_size),
generator=torch.Generator().manual_seed(seed),
)
train_set, test_set = list(train_set), list(test_set)
print(f"train has {len(train_set):,} samples")
print(f"val has {len(test_set):,} samples")
print("Processing train split ...")
train_set = [prepare_sample(sample, tokenizer, max_seq_length, mask_inputs) for sample in tqdm(train_set)]
torch.save(train_set, file_path.parent / "train.pt")
print("Processing test split ...")
test_set = [prepare_sample(sample, tokenizer, max_seq_length, mask_inputs) for sample in tqdm(test_set)]
torch.save(test_set, file_path.parent / "test.pt")
def download(file_path: Path):
"""Downloads the raw json data file and saves it in the given destination."""
if file_path.exists():
return
with open(file_path, "w") as f:
f.write(requests.get(DATA_FILE).text)
def prepare_sample(example: dict, tokenizer: Tokenizer, max_length: int, mask_inputs: bool = True):
"""Processes a single sample.
Each sample in the dataset consists of:
- instruction: A string describing the task
- input: A string holding a special input value for the instruction.
This only applies to some samples, and in others this is empty.
- output: The response string
This function processes this data to produce a prompt text and a label for
supervised training. The input text is formed as a single message including all
the instruction, the input (optional) and the response.
The label/target is the same message but can optionally have the instruction + input text
masked out (mask_inputs=True).
Finally, both the prompt and the label get tokenized. If desired, all tokens
in the label that correspond to the original input prompt get masked out (default).
"""
full_prompt = generate_prompt(example)
full_prompt_and_response = full_prompt + example["output"]
encoded_full_prompt = tokenize(tokenizer, full_prompt, max_length=max_length, eos=False)
encoded_full_prompt_and_response = tokenize(tokenizer, full_prompt_and_response, eos=True, max_length=max_length)
# The labels are the full prompt with response, but with the prompt masked out
labels = encoded_full_prompt_and_response.clone()
if mask_inputs:
labels[:len(encoded_full_prompt)] = IGNORE_INDEX
return {**example, "input_ids": encoded_full_prompt_and_response, "input_ids_no_response": encoded_full_prompt, "labels": labels}
def tokenize(tokenizer: Tokenizer, string: str, max_length: int, eos=True) -> torch.Tensor:
return tokenizer.encode(string, bos=True, eos=eos, max_length=max_length)
def generate_prompt(example):
"""Generates a standardized message to prompt the model with an instruction, optional input and a
'response' field."""
if example["input"]:
return (
"Below is an instruction that describes a task, paired with an input that provides further context. "
"Write a response that appropriately completes the request.\n\n"
f"### Instruction:\n{example['instruction']}\n\n### Input:\n{example['input']}\n\n### Response:"
)
return (
"Below is an instruction that describes a task. "
"Write a response that appropriately completes the request.\n\n"
f"### Instruction:\n{example['instruction']}\n\n### Response:"
)
if __name__ == "__main__":
from jsonargparse import CLI
CLI(prepare)
|