File size: 23,536 Bytes
7d52396
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
# Derived from https://github.com/microsoft/LoRA
#  ------------------------------------------------------------------------------------------
#  Copyright (c) Microsoft Corporation. All rights reserved.
#  Licensed under the MIT License (MIT). See LICENSE in the repo root for license information.
#  ------------------------------------------------------------------------------------------

r"""
    Low Ranking Adaptation for LLMs scheme.

             โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
             โ”†         h         โ”†
             โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                       โ–ฒ
                       |
                       +
                    /     \
    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”    โ•ญโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฎ     Matrix initialization:
    โ”†                 โ”†     \      B      /      B = 0
    โ”†   pretrained    โ”†      \    r*d    /       A = N(0, sigma^2)
    โ”†    weights      โ”†       โ•ฐโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฏ
    โ”†                 โ”†       |    r    |        r - rank
    โ”†   W e R^(d*d)   โ”†       | โ—€โ”€โ”€โ”€โ”€โ”€โ–ถ |
    โ”†                 โ”†       โ•ญโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฎ
    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜      /     A     \
              โ–ฒ             /     d*r     \
               \           โ•ฐโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฏ
                \                โ–ฒ
                 \              /
                  \            /
             โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
             โ”†         x         โ”†
             โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

With LoRA (Low Ranking Adaptation: https://arxiv.org/abs/2106.09685) instead of learning weights of size d*d,
we can freeze the pretrained weights and instead learn two matrices of size d*r and r*d (they will store weight updates
for the pretrained weights): the number of parameters in this case will be reduced drastically (depending on the rank of
course) yet after multiplication of matrices d*r and r*d we will get a matrix d*d which we can sum with frozen
pretrained weights and thus fine-tune the model.

The goal of this approach is to move weight updates into a separate matrix which is decomposed with
two matrices of a lower rank.
"""

import torch
import torch.nn as nn
import torch.nn.functional as F

import math
from typing import Dict, List

import lit_llama.model as llama

from contextlib import contextmanager
from dataclasses import dataclass


class LoRALayer():
    def __init__(
        self, 
        r: int, 
        lora_alpha: int, 
        lora_dropout: float,
        merge_weights: bool,
    ):
        """Store LoRA specific attributes in a class.

        Args:
            r: rank of the weight update matrices. To make sense of using LoRA the rank should be smaller than the rank of
                the weights of the model.  The rank can be as low as 1: https://arxiv.org/pdf/2106.09685.pdf (section 7.2)
            lora_alpha: alpha is needed for scaling updates as alpha/r
                "This scaling helps to reduce the need to retune hyperparameters when we vary r"
                https://arxiv.org/pdf/2106.09685.pdf (section 4.1)
            lora_dropout: dropout that is applied on the input in the LoRA branch (before multiplying by matrix A)
            merge_weights: whether we want to merge pretrained weights and LoRA weight updates. This is useful if one wants to use
                fine-tuned model as a standalone one (without storing LoRA weights separately) plus it helps to reduce
                overhead during inference.
        """
        self.r = r
        self.lora_alpha = lora_alpha
        # Optional dropout
        if lora_dropout > 0.:
            self.lora_dropout = nn.Dropout(p=lora_dropout)
        else:
            self.lora_dropout = lambda x: x
        # Mark the weight as unmerged
        self.merged = False
        self.merge_weights = merge_weights


class MergedLinear(nn.Linear, LoRALayer):
    # LoRA implemented in a dense layer
    def __init__(
        self, 
        # โ†“ this part is for pretrained weights
        in_features: int, 
        out_features: int, 
        # โ†“ the remaining part is for LoRA
        r: int = 0, 
        lora_alpha: int = 1, 
        lora_dropout: float = 0.,
        enable_lora: List[bool] = [False],
        fan_in_fan_out: bool = False,
        merge_weights: bool = True,
        **kwargs
    ):
        """LoRA wrapper around linear class that is used for calculation of q, k and v matrices.

        This class has three weight matrices:
            1. Pretrained weights are stored as `self.weight` (because of the nn.Linear inheritance)
            2. LoRA A matrix as `self.lora_A`
            3. LoRA B matrix as `self.lora_B`
        Only LoRA's A and B matrices are updated, pretrained weights stay frozen.

        Args:
            in_features: number of input features of the pretrained weights
            out_features: number of output features of the pretrained weights
            r: rank of the weight update matrices. To make sense of using LoRA the rank should be smaller than the rank of
                the weights of the model.  The rank can be as low as 1: https://arxiv.org/pdf/2106.09685.pdf (section 7.2)
            lora_alpha: alpha is needed for scaling updates as alpha/r
                "This scaling helps to reduce the need to retune hyperparameters when we vary r"
                https://arxiv.org/pdf/2106.09685.pdf (section 4.1)
            lora_dropout: dropout that is applied on the input in the LoRA branch (before multiplying by matrix A)
            enable_lora: MergeLinear class is for attention mechanism where qkv are calculated with a single weight matrix. If we
                don't want to apply LoRA for all three (query, key and value) we can set it as False. For example if we want
                to apply LoRA only to `query` and `value` but keep `key` without weight updates we should pass `[True,
                False, True]`
            fan_in_fan_out: set this to True if the layer to replace stores weight like (fan_in, fan_out).  For example, gpt-2 uses
                `Conv1D` which stores weights like (fan_in, fan_out) and hence this should be set to `True`
                https://github.com/huggingface/peft/blob/main/src/peft/tuners/lora.py#LL53C9-L53C112
            merge_weights: whether we want to merge pretrained weights and LoRA weight updates. This is useful if one wants to use
                fine-tuned model as a standalone one (without storing LoRA weight separately) plus it helps to reduce
                overhead during inference.
        """
        nn.Linear.__init__(self, in_features, out_features, **kwargs)
        LoRALayer.__init__(self, r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout,
                           merge_weights=merge_weights)
        assert out_features % len(enable_lora) == 0, \
            'The length of enable_lora must divide out_features'
        self.enable_lora = enable_lora
        self.fan_in_fan_out = fan_in_fan_out

        # Actual trainable parameters
        # To better understand initialization let's imagine that we have such parameters:
        # โšฌ in_features: 128 (embeddings_size)
        # โšฌ out_features: 384 (3 * embedding_size)
        # โšฌ r: 2
        # โšฌ enable_lora: [True, False, True]
        if r > 0 and any(enable_lora):
            self.lora_A = nn.Parameter(
                self.weight.new_zeros((r * sum(enable_lora), in_features)))  # (4, 128)
            self.lora_B = nn.Parameter(
                self.weight.new_zeros((out_features // len(enable_lora) * sum(enable_lora), r))  # (256, 2)
            ) # weights for Conv1D with groups=sum(enable_lora)
            # Notes about shapes above
            # - self.lora_A has shape (4, 128): 4 because rank is 2 and LoRA is applied only to two matrices;
            # 128 is the input size of the x (embedding size). (4, 128) and not (128, 4) because later on in
            # F.linear function weights are automatically transposed. In addition conv1d requires channels to
            # be before seq length
            # - self.lora_B has shape (256, 2): 256 because LoRA is applied only to two matrices, so the output is
            # 128*2; 2 tells to have two channels per group for group convolution

            # Scaling:
            # This balances the pretrained model`s knowledge and the new task-specific adaptation
            # https://lightning.ai/pages/community/tutorial/lora-llm/
            # So, set alpha to 1.0 to fully add LoRA. If the LoRA seems to have too much effect (i.e., overfitted), set
            # alpha to lower value. If the LoRA seems to have too little effect, set alpha to higher than 1.0. You can
            # tune these values to your needs. This value can be even slightly greater than 1.0!
            # https://github.com/cloneofsimo/lora
            self.scaling = self.lora_alpha / self.r

            # Freezing the pre-trained weight matrix
            self.weight.requires_grad = False # (384, 128)

            # Compute the indices
            # Indices are needed to properly pad weight updates with zeros. If we want to fine-tune queries and values,
            # but not keys, then the weights update should be:
            #
            # [[ฮ”W,ฮ”W,ฮ”W, ..., 0,0,0, ..., ฮ”W,ฮ”W,ฮ”W,],
            #  [....................................],
            #  [ฮ”W,ฮ”W,ฮ”W, ..., 0,0,0, ..., ฮ”W,ฮ”W,ฮ”W,]]
            #      โ†‘              โ†‘            โ†‘
            # ________________________________________
            # | query         | key       | value    |
            # ----------------------------------------
            self.lora_ind = self.weight.new_zeros(
                (out_features, ), dtype=torch.bool
            ).view(len(enable_lora), -1)  # (3, 128)
            self.lora_ind[enable_lora, :] = True  # (3, 128)
            self.lora_ind = self.lora_ind.view(-1)  # (384,)
        self.reset_parameters()
        if fan_in_fan_out:
            self.weight.data = self.weight.data.T

    def reset_parameters(self):
        """Reset all the weights, even including pretrained ones."""
        nn.Linear.reset_parameters(self)
        if hasattr(self, 'lora_A'):
            # initialize A the same way as the default for nn.Linear and B to zero
            # Wondering why 'a' is equal to math.sqrt(5)?: https://github.com/pytorch/pytorch/issues/15314
            nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
            nn.init.zeros_(self.lora_B)

    def zero_pad(self, x: torch.Tensor) -> torch.Tensor:
        """Properly pad weight updates with zeros.

        If, based on `self.enable_lora`, we want to fine-tune queries and values, but not keys,
        then the weights update should be:

        [[ฮ”W,ฮ”W,ฮ”W, ..., 0,0,0, ..., ฮ”W,ฮ”W,ฮ”W,],
         [....................................],
         [ฮ”W,ฮ”W,ฮ”W, ..., 0,0,0, ..., ฮ”W,ฮ”W,ฮ”W,]]
            โ†‘              โ†‘            โ†‘
        ________________________________________
        | query         | key       | value    |
        ----------------------------------------

        Args:
            x: tensor with weights update that will be padded with zeros if necessary

        Returns:
            A tensor with weight updates and zeros for deselected q, k or v
        """
        # Let's image that:
        # โšฌ input x has shape (64, 64, 256): (batch_size, sequence_length, embeddings_size)
        # โšฌ embeddings_size: 128
        # โšฌ self.out_features: 384 (3 * embeddings_size)
        # โšฌ enable_lora: [True, False, True]
        # Then x has embeddings_size of 256 (2 * 128 as enable_lora only for query and value, not keys) and expected
        # embeddings_size is 384 (self.out_features), so that means that we need to pad from 256 to 384 with zeros, but
        # only for key updates (this is where self.lora_ind comes in handy)
        # Note: double transpose (in the beginning and in the end) is basically a guard for two-dimensional tensors
        # for example when we want to merge/unmerge LoRA weights and pretrained weights
        x = x.transpose(0, 1)
        result = x.new_zeros((*x.shape[:-1], self.out_features))  # (64, 64, 384)
        result = result.view(-1, self.out_features)  # (4096, 384)
        result[:, self.lora_ind] = x.reshape(
            -1, self.out_features // len(self.enable_lora) * sum(self.enable_lora)
        )  # (4096, 256)
        return result.view((*x.shape[:-1], self.out_features)).transpose(0, 1)  # (64, 64, 384)

    def train(self, mode: bool = True):
        """Set the module into train or eval mode if `mode` is True of False respectively.

        For train mode (train(True)) if weights are merged we need to subtract weights updates (LoRA_A @ LoRA_B) from
        pretrained weights so we can continue training LoRA's matrices A and B and keep pretrained weights frozen.

        For eval mode (train(False)) if weights are not merged we need to add weight updates to pretrained weights in
        order to reduce computational overhead during inference.

        Args:
            mode: if True the module will be set into train mode (affects Dropout and BatchNorm), if False - eval mode.

        """
        def T(w):
            return w.T if self.fan_in_fan_out else w
        # despite being called from nn.Linear this method will put all layers into train mode, including nn.Dropout
        # of course except parameters (such as self.lora_A, self.lora_B)
        nn.Linear.train(self, mode)

        # if train(True) -> unmerge unless we already have them unmerged
        # if train(False) -> merge unless we already have them merged
        should = self.merged if mode else not self.merged

        # Let's assume that:
        # โšฌ self.weight.data: (384, 128) or (3 * embedding_size, embedding_size)
        # โšฌ self.lora_A.data: (4, 128)
        # โšฌ self.lora_B.data: (256, 2)
        if self.merge_weights and should:
            if self.r > 0 and any(self.enable_lora):
                delta_w = F.conv1d(
                    self.lora_A.data.unsqueeze(0),   # (4, 128) -> (1, 4, 128)
                    self.lora_B.data.unsqueeze(-1),  # (256, 2) -> (256, 2, 1)
                    groups=sum(self.enable_lora)
                ).squeeze(0) # (1, 4, 128) @ (256, 2, 1) -> (1, 256, 128) -> (256, 128)
                # -1: W = W - delta_W (unmerge), +1: W = W + delta_W (merge)
                sign = -1 if mode else 1
                self.weight.data += sign * self.zero_pad(T(delta_w * self.scaling)) # (256, 128) after zero_pad (384, 128)
            self.merged = not mode

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """Do the forward pass.

        If LoRA's weights are merged with pretrained ones then it's a simple matrix multiplication.
        If not, then multiply pretrained weights with input, apply LoRA on input and do summation.

        Args:
            x: input tensor of shape (batch_size, context_length, embedding_size)

        Returns:
            Output tensor of shape (batch_size, context_length, 3 * embedding_size)
        """
        def T(w):
            return w.T if self.fan_in_fan_out else w

        # Let's assume that:
        # โšฌ x: (64, 64, 128) or (batch_size, context_length, embedding_size)
        # โšฌ self.weight: (384, 128) or (3 * embedding_size, embedding_size)
        # โšฌ self.lora_A.data: (4, 128)
        # โšฌ self.lora_B.data: (256, 2)

        # the logic here is that the weights are merged only during inference
        # so if they are merged we don't need to do anything with LoRA's A and B matrices
        # but if the weights are not merged that means that the forward method is called during
        # training and we need to forward pass input through pretrained weights, LoRA A and B matrices
        # and do the summation (as per scheme at the top of the file)
        if self.merged:
            return F.linear(x, T(self.weight), bias=self.bias)
        else:
            # `F.linear` automatically transposes the second argument (T(self.weight) in our case)
            result = F.linear(x, T(self.weight), bias=self.bias)  # (64, 64, 128) @ (384, 128) -> (64, 64, 384)
            if self.r > 0:
                after_A = F.linear(self.lora_dropout(x), self.lora_A)  # (64, 64, 128) @ (4, 128) -> (64, 64, 4)
                # For F.conv1d:
                # โšฌ input: input tensor of shape (mini-batch, in_channels, iW)
                # โšฌ weight: filters of shape (out_channels, in_channels/groups, kW)
                # โšฌ groups: split input into groups, in_channels should be divisible by the number of groups. Default: 1
                # presumably iW - sequence width/length, kW - kernel width
                after_B = F.conv1d(
                    after_A.transpose(-2, -1),  # (64, 64, 4) -> (64, 4, 64)
                    self.lora_B.unsqueeze(-1),  # (256, 2) -> (256, 2, 1)
                    groups=sum(self.enable_lora)
                ).transpose(-2, -1)  # (64, 4, 64) @ (256, 2, 1) -> (64, 256, 64) -> (64, 64, 256)
                result += self.zero_pad(after_B) * self.scaling  # (64, 64, 256) after zero_pad (64, 64, 384)
            return result


def mark_only_lora_as_trainable(model: nn.Module, bias: str = 'none') -> None:
    """Freeze all modules except LoRA's and depending on 'bias' value unfreezes bias weights.

    Args:
        model: model with LoRA layers
        bias: 
            ``"none"``: all bias weights will be frozen,
            ``"lora_only"``: only bias weight for LoRA layers will be unfrozen,
            ``"all"``: all bias weights will be unfrozen.

    Raises:
        NotImplementedError: if `bias` not in ["none", "lora_only", "all"]
    """
    # freeze all layers except LoRA's
    for n, p in model.named_parameters():
        if 'lora_' not in n:
            p.requires_grad = False

    # depending on the `bias` value unfreeze bias weights
    if bias == 'none':
        return
    elif bias == 'all':
        for n, p in model.named_parameters():
            if 'bias' in n:
                p.requires_grad = True
    elif bias == 'lora_only':
        for m in model.modules():
            if isinstance(m, LoRALayer) and \
                hasattr(m, 'bias') and \
                m.bias is not None:
                    m.bias.requires_grad = True
    else:
        raise NotImplementedError


def lora_state_dict(model: nn.Module, bias: str = 'none') -> Dict[str, torch.Tensor]:
    """Return state_dict with weights of LoRA's A and B matrices and with biases depending on the `bias` value.

    Args:
        model: model with LoRA layers
        bias: 
            ``"none"``: state dict will not store bias weights,
            ``"lora_only"``: state dict will store bias weights only from LoRA layers,
            ``"all"``: state dict will store all bias weights.

    Returns:
        Weights and biases of LoRA layers

    Raises:
        NotImplementedError: if `bias` not in ["none", "lora_only", "all"]
    """
    my_state_dict = model.state_dict()
    if bias == 'none':
        return {k: my_state_dict[k] for k in my_state_dict if 'lora_' in k}
    elif bias == 'all':
        return {k: my_state_dict[k] for k in my_state_dict if 'lora_' in k or 'bias' in k}
    elif bias == 'lora_only':
        to_return = {}
        for k in my_state_dict:
            if 'lora_' in k:
                to_return[k] = my_state_dict[k]
                bias_name = k.split('lora_')[0]+'bias'
                if bias_name in my_state_dict:
                    to_return[bias_name] = my_state_dict[bias_name]
        return to_return
    else:
        raise NotImplementedError


@dataclass
class LoRAConfig:
    r: float = 0.0
    alpha: float = 1.0
    dropout: float = 0.0


class CausalSelfAttention(llama.CausalSelfAttention):
    lora_config = None

    def __init__(self, config: llama.LLaMAConfig) -> None:
        """Causal self-attention with calculating qkv matrices with a single matrix* and Low Ranking Adaptation for
        parameter-efficient fine-tuning.

        *Instead of creating multiple heads and concatenating the result (in addition to creating separate matrices for
        query, key and value for each head) we can do this in a single pass with a single weight matrix.

        Args:
            config: 
                ``"block_size"``: size of the context of the model,
                ``"vocab_size"``: number of unique tokens,
                ``"padded_vocab_size"``: padded size of the vocabulary to the nearest multiple of 64 (leads to a greater performance),
                ``"n_layer"``: number of transformer blocks (self-attention + MLP),
                ``"n_head"``: number of heads in multi-head attention mechanism,
                ``"n_embd"``: size of the embedding: vector representation of each token.
        """
        # Skip the parent class __init__ altogether and replace it to avoid
        # useless allocations
        nn.Module.__init__(self)
        assert config.n_embd % config.n_head == 0

        # key, query, value projections for all heads, but in a batch
        self.c_attn = MergedLinear(
            in_features=config.n_embd,
            out_features=3 * config.n_embd,
            r=self.lora_config.r,
            lora_alpha=self.lora_config.alpha,
            lora_dropout=self.lora_config.dropout,
            enable_lora=[True, False, True],
            fan_in_fan_out = False,
            merge_weights=True,
            bias=False)
        # output projection
        self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=False)
        # regularization
        self.n_head = config.n_head
        self.n_embd = config.n_embd
        self.block_size = config.block_size
        self.rope_cache = None


@contextmanager
def lora(r, alpha, dropout, enabled: bool = True):
    """Apply context manager under which you can instantiate the model with LoRA.

    In a nutshell the code inside this function forces to use LoRA variant of causal self-attention
    instead of the original one (without LoRA).

    Args:
        r: rank of the weight update matrices. To make sense of using LoRA the rank should be smaller than the rank of
            the weights of the model.  The rank can be as low as 1: https://arxiv.org/pdf/2106.09685.pdf (section 7.2)
        alpha: alpha is needed for scaling updates as alpha/r
            "This scaling helps to reduce the need to retune hyperparameters when we vary r"
            https://arxiv.org/pdf/2106.09685.pdf (section 4.1)
        dropout: dropout that is applied on the input in the LoRA branch (before multiplying by matrix A)
        enabled: enables/disables LoRA
    """
    if not enabled:
        yield
        return

    CausalSelfAttention.lora_config = LoRAConfig(r=r, alpha=alpha, dropout=dropout)
    # when entering context manager replace link to causal self-attention class from original
    # to a variant with LoRA
    causal_self_attention = llama.CausalSelfAttention
    llama.CausalSelfAttention = CausalSelfAttention
    yield
    # when exiting context manager - restore link to original causal self-attention class
    llama.CausalSelfAttention = causal_self_attention

    CausalSelfAttention.lora_config = None