File size: 23,536 Bytes
7d52396 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 |
# Derived from https://github.com/microsoft/LoRA
# ------------------------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License (MIT). See LICENSE in the repo root for license information.
# ------------------------------------------------------------------------------------------
r"""
Low Ranking Adaptation for LLMs scheme.
โโโโโโโโโโโโโโโโโโโโโ
โ h โ
โโโโโโโโโโโโโโโโโโโโโ
โฒ
|
+
/ \
โโโโโโโโโโโโโโโโโโโ โญโโโโโโโโโโโโโโโโฎ Matrix initialization:
โ โ \ B / B = 0
โ pretrained โ \ r*d / A = N(0, sigma^2)
โ weights โ โฐโโโโโโโโโโฏ
โ โ | r | r - rank
โ W e R^(d*d) โ | โโโโโโโถ |
โ โ โญโโโโโโโโโโฎ
โโโโโโโโโโโโโโโโโโโ / A \
โฒ / d*r \
\ โฐโโโโโโโโโโโโโโโโฏ
\ โฒ
\ /
\ /
โโโโโโโโโโโโโโโโโโโโโ
โ x โ
โโโโโโโโโโโโโโโโโโโโโ
With LoRA (Low Ranking Adaptation: https://arxiv.org/abs/2106.09685) instead of learning weights of size d*d,
we can freeze the pretrained weights and instead learn two matrices of size d*r and r*d (they will store weight updates
for the pretrained weights): the number of parameters in this case will be reduced drastically (depending on the rank of
course) yet after multiplication of matrices d*r and r*d we will get a matrix d*d which we can sum with frozen
pretrained weights and thus fine-tune the model.
The goal of this approach is to move weight updates into a separate matrix which is decomposed with
two matrices of a lower rank.
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from typing import Dict, List
import lit_llama.model as llama
from contextlib import contextmanager
from dataclasses import dataclass
class LoRALayer():
def __init__(
self,
r: int,
lora_alpha: int,
lora_dropout: float,
merge_weights: bool,
):
"""Store LoRA specific attributes in a class.
Args:
r: rank of the weight update matrices. To make sense of using LoRA the rank should be smaller than the rank of
the weights of the model. The rank can be as low as 1: https://arxiv.org/pdf/2106.09685.pdf (section 7.2)
lora_alpha: alpha is needed for scaling updates as alpha/r
"This scaling helps to reduce the need to retune hyperparameters when we vary r"
https://arxiv.org/pdf/2106.09685.pdf (section 4.1)
lora_dropout: dropout that is applied on the input in the LoRA branch (before multiplying by matrix A)
merge_weights: whether we want to merge pretrained weights and LoRA weight updates. This is useful if one wants to use
fine-tuned model as a standalone one (without storing LoRA weights separately) plus it helps to reduce
overhead during inference.
"""
self.r = r
self.lora_alpha = lora_alpha
# Optional dropout
if lora_dropout > 0.:
self.lora_dropout = nn.Dropout(p=lora_dropout)
else:
self.lora_dropout = lambda x: x
# Mark the weight as unmerged
self.merged = False
self.merge_weights = merge_weights
class MergedLinear(nn.Linear, LoRALayer):
# LoRA implemented in a dense layer
def __init__(
self,
# โ this part is for pretrained weights
in_features: int,
out_features: int,
# โ the remaining part is for LoRA
r: int = 0,
lora_alpha: int = 1,
lora_dropout: float = 0.,
enable_lora: List[bool] = [False],
fan_in_fan_out: bool = False,
merge_weights: bool = True,
**kwargs
):
"""LoRA wrapper around linear class that is used for calculation of q, k and v matrices.
This class has three weight matrices:
1. Pretrained weights are stored as `self.weight` (because of the nn.Linear inheritance)
2. LoRA A matrix as `self.lora_A`
3. LoRA B matrix as `self.lora_B`
Only LoRA's A and B matrices are updated, pretrained weights stay frozen.
Args:
in_features: number of input features of the pretrained weights
out_features: number of output features of the pretrained weights
r: rank of the weight update matrices. To make sense of using LoRA the rank should be smaller than the rank of
the weights of the model. The rank can be as low as 1: https://arxiv.org/pdf/2106.09685.pdf (section 7.2)
lora_alpha: alpha is needed for scaling updates as alpha/r
"This scaling helps to reduce the need to retune hyperparameters when we vary r"
https://arxiv.org/pdf/2106.09685.pdf (section 4.1)
lora_dropout: dropout that is applied on the input in the LoRA branch (before multiplying by matrix A)
enable_lora: MergeLinear class is for attention mechanism where qkv are calculated with a single weight matrix. If we
don't want to apply LoRA for all three (query, key and value) we can set it as False. For example if we want
to apply LoRA only to `query` and `value` but keep `key` without weight updates we should pass `[True,
False, True]`
fan_in_fan_out: set this to True if the layer to replace stores weight like (fan_in, fan_out). For example, gpt-2 uses
`Conv1D` which stores weights like (fan_in, fan_out) and hence this should be set to `True`
https://github.com/huggingface/peft/blob/main/src/peft/tuners/lora.py#LL53C9-L53C112
merge_weights: whether we want to merge pretrained weights and LoRA weight updates. This is useful if one wants to use
fine-tuned model as a standalone one (without storing LoRA weight separately) plus it helps to reduce
overhead during inference.
"""
nn.Linear.__init__(self, in_features, out_features, **kwargs)
LoRALayer.__init__(self, r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout,
merge_weights=merge_weights)
assert out_features % len(enable_lora) == 0, \
'The length of enable_lora must divide out_features'
self.enable_lora = enable_lora
self.fan_in_fan_out = fan_in_fan_out
# Actual trainable parameters
# To better understand initialization let's imagine that we have such parameters:
# โฌ in_features: 128 (embeddings_size)
# โฌ out_features: 384 (3 * embedding_size)
# โฌ r: 2
# โฌ enable_lora: [True, False, True]
if r > 0 and any(enable_lora):
self.lora_A = nn.Parameter(
self.weight.new_zeros((r * sum(enable_lora), in_features))) # (4, 128)
self.lora_B = nn.Parameter(
self.weight.new_zeros((out_features // len(enable_lora) * sum(enable_lora), r)) # (256, 2)
) # weights for Conv1D with groups=sum(enable_lora)
# Notes about shapes above
# - self.lora_A has shape (4, 128): 4 because rank is 2 and LoRA is applied only to two matrices;
# 128 is the input size of the x (embedding size). (4, 128) and not (128, 4) because later on in
# F.linear function weights are automatically transposed. In addition conv1d requires channels to
# be before seq length
# - self.lora_B has shape (256, 2): 256 because LoRA is applied only to two matrices, so the output is
# 128*2; 2 tells to have two channels per group for group convolution
# Scaling:
# This balances the pretrained model`s knowledge and the new task-specific adaptation
# https://lightning.ai/pages/community/tutorial/lora-llm/
# So, set alpha to 1.0 to fully add LoRA. If the LoRA seems to have too much effect (i.e., overfitted), set
# alpha to lower value. If the LoRA seems to have too little effect, set alpha to higher than 1.0. You can
# tune these values to your needs. This value can be even slightly greater than 1.0!
# https://github.com/cloneofsimo/lora
self.scaling = self.lora_alpha / self.r
# Freezing the pre-trained weight matrix
self.weight.requires_grad = False # (384, 128)
# Compute the indices
# Indices are needed to properly pad weight updates with zeros. If we want to fine-tune queries and values,
# but not keys, then the weights update should be:
#
# [[ฮW,ฮW,ฮW, ..., 0,0,0, ..., ฮW,ฮW,ฮW,],
# [....................................],
# [ฮW,ฮW,ฮW, ..., 0,0,0, ..., ฮW,ฮW,ฮW,]]
# โ โ โ
# ________________________________________
# | query | key | value |
# ----------------------------------------
self.lora_ind = self.weight.new_zeros(
(out_features, ), dtype=torch.bool
).view(len(enable_lora), -1) # (3, 128)
self.lora_ind[enable_lora, :] = True # (3, 128)
self.lora_ind = self.lora_ind.view(-1) # (384,)
self.reset_parameters()
if fan_in_fan_out:
self.weight.data = self.weight.data.T
def reset_parameters(self):
"""Reset all the weights, even including pretrained ones."""
nn.Linear.reset_parameters(self)
if hasattr(self, 'lora_A'):
# initialize A the same way as the default for nn.Linear and B to zero
# Wondering why 'a' is equal to math.sqrt(5)?: https://github.com/pytorch/pytorch/issues/15314
nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
nn.init.zeros_(self.lora_B)
def zero_pad(self, x: torch.Tensor) -> torch.Tensor:
"""Properly pad weight updates with zeros.
If, based on `self.enable_lora`, we want to fine-tune queries and values, but not keys,
then the weights update should be:
[[ฮW,ฮW,ฮW, ..., 0,0,0, ..., ฮW,ฮW,ฮW,],
[....................................],
[ฮW,ฮW,ฮW, ..., 0,0,0, ..., ฮW,ฮW,ฮW,]]
โ โ โ
________________________________________
| query | key | value |
----------------------------------------
Args:
x: tensor with weights update that will be padded with zeros if necessary
Returns:
A tensor with weight updates and zeros for deselected q, k or v
"""
# Let's image that:
# โฌ input x has shape (64, 64, 256): (batch_size, sequence_length, embeddings_size)
# โฌ embeddings_size: 128
# โฌ self.out_features: 384 (3 * embeddings_size)
# โฌ enable_lora: [True, False, True]
# Then x has embeddings_size of 256 (2 * 128 as enable_lora only for query and value, not keys) and expected
# embeddings_size is 384 (self.out_features), so that means that we need to pad from 256 to 384 with zeros, but
# only for key updates (this is where self.lora_ind comes in handy)
# Note: double transpose (in the beginning and in the end) is basically a guard for two-dimensional tensors
# for example when we want to merge/unmerge LoRA weights and pretrained weights
x = x.transpose(0, 1)
result = x.new_zeros((*x.shape[:-1], self.out_features)) # (64, 64, 384)
result = result.view(-1, self.out_features) # (4096, 384)
result[:, self.lora_ind] = x.reshape(
-1, self.out_features // len(self.enable_lora) * sum(self.enable_lora)
) # (4096, 256)
return result.view((*x.shape[:-1], self.out_features)).transpose(0, 1) # (64, 64, 384)
def train(self, mode: bool = True):
"""Set the module into train or eval mode if `mode` is True of False respectively.
For train mode (train(True)) if weights are merged we need to subtract weights updates (LoRA_A @ LoRA_B) from
pretrained weights so we can continue training LoRA's matrices A and B and keep pretrained weights frozen.
For eval mode (train(False)) if weights are not merged we need to add weight updates to pretrained weights in
order to reduce computational overhead during inference.
Args:
mode: if True the module will be set into train mode (affects Dropout and BatchNorm), if False - eval mode.
"""
def T(w):
return w.T if self.fan_in_fan_out else w
# despite being called from nn.Linear this method will put all layers into train mode, including nn.Dropout
# of course except parameters (such as self.lora_A, self.lora_B)
nn.Linear.train(self, mode)
# if train(True) -> unmerge unless we already have them unmerged
# if train(False) -> merge unless we already have them merged
should = self.merged if mode else not self.merged
# Let's assume that:
# โฌ self.weight.data: (384, 128) or (3 * embedding_size, embedding_size)
# โฌ self.lora_A.data: (4, 128)
# โฌ self.lora_B.data: (256, 2)
if self.merge_weights and should:
if self.r > 0 and any(self.enable_lora):
delta_w = F.conv1d(
self.lora_A.data.unsqueeze(0), # (4, 128) -> (1, 4, 128)
self.lora_B.data.unsqueeze(-1), # (256, 2) -> (256, 2, 1)
groups=sum(self.enable_lora)
).squeeze(0) # (1, 4, 128) @ (256, 2, 1) -> (1, 256, 128) -> (256, 128)
# -1: W = W - delta_W (unmerge), +1: W = W + delta_W (merge)
sign = -1 if mode else 1
self.weight.data += sign * self.zero_pad(T(delta_w * self.scaling)) # (256, 128) after zero_pad (384, 128)
self.merged = not mode
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Do the forward pass.
If LoRA's weights are merged with pretrained ones then it's a simple matrix multiplication.
If not, then multiply pretrained weights with input, apply LoRA on input and do summation.
Args:
x: input tensor of shape (batch_size, context_length, embedding_size)
Returns:
Output tensor of shape (batch_size, context_length, 3 * embedding_size)
"""
def T(w):
return w.T if self.fan_in_fan_out else w
# Let's assume that:
# โฌ x: (64, 64, 128) or (batch_size, context_length, embedding_size)
# โฌ self.weight: (384, 128) or (3 * embedding_size, embedding_size)
# โฌ self.lora_A.data: (4, 128)
# โฌ self.lora_B.data: (256, 2)
# the logic here is that the weights are merged only during inference
# so if they are merged we don't need to do anything with LoRA's A and B matrices
# but if the weights are not merged that means that the forward method is called during
# training and we need to forward pass input through pretrained weights, LoRA A and B matrices
# and do the summation (as per scheme at the top of the file)
if self.merged:
return F.linear(x, T(self.weight), bias=self.bias)
else:
# `F.linear` automatically transposes the second argument (T(self.weight) in our case)
result = F.linear(x, T(self.weight), bias=self.bias) # (64, 64, 128) @ (384, 128) -> (64, 64, 384)
if self.r > 0:
after_A = F.linear(self.lora_dropout(x), self.lora_A) # (64, 64, 128) @ (4, 128) -> (64, 64, 4)
# For F.conv1d:
# โฌ input: input tensor of shape (mini-batch, in_channels, iW)
# โฌ weight: filters of shape (out_channels, in_channels/groups, kW)
# โฌ groups: split input into groups, in_channels should be divisible by the number of groups. Default: 1
# presumably iW - sequence width/length, kW - kernel width
after_B = F.conv1d(
after_A.transpose(-2, -1), # (64, 64, 4) -> (64, 4, 64)
self.lora_B.unsqueeze(-1), # (256, 2) -> (256, 2, 1)
groups=sum(self.enable_lora)
).transpose(-2, -1) # (64, 4, 64) @ (256, 2, 1) -> (64, 256, 64) -> (64, 64, 256)
result += self.zero_pad(after_B) * self.scaling # (64, 64, 256) after zero_pad (64, 64, 384)
return result
def mark_only_lora_as_trainable(model: nn.Module, bias: str = 'none') -> None:
"""Freeze all modules except LoRA's and depending on 'bias' value unfreezes bias weights.
Args:
model: model with LoRA layers
bias:
``"none"``: all bias weights will be frozen,
``"lora_only"``: only bias weight for LoRA layers will be unfrozen,
``"all"``: all bias weights will be unfrozen.
Raises:
NotImplementedError: if `bias` not in ["none", "lora_only", "all"]
"""
# freeze all layers except LoRA's
for n, p in model.named_parameters():
if 'lora_' not in n:
p.requires_grad = False
# depending on the `bias` value unfreeze bias weights
if bias == 'none':
return
elif bias == 'all':
for n, p in model.named_parameters():
if 'bias' in n:
p.requires_grad = True
elif bias == 'lora_only':
for m in model.modules():
if isinstance(m, LoRALayer) and \
hasattr(m, 'bias') and \
m.bias is not None:
m.bias.requires_grad = True
else:
raise NotImplementedError
def lora_state_dict(model: nn.Module, bias: str = 'none') -> Dict[str, torch.Tensor]:
"""Return state_dict with weights of LoRA's A and B matrices and with biases depending on the `bias` value.
Args:
model: model with LoRA layers
bias:
``"none"``: state dict will not store bias weights,
``"lora_only"``: state dict will store bias weights only from LoRA layers,
``"all"``: state dict will store all bias weights.
Returns:
Weights and biases of LoRA layers
Raises:
NotImplementedError: if `bias` not in ["none", "lora_only", "all"]
"""
my_state_dict = model.state_dict()
if bias == 'none':
return {k: my_state_dict[k] for k in my_state_dict if 'lora_' in k}
elif bias == 'all':
return {k: my_state_dict[k] for k in my_state_dict if 'lora_' in k or 'bias' in k}
elif bias == 'lora_only':
to_return = {}
for k in my_state_dict:
if 'lora_' in k:
to_return[k] = my_state_dict[k]
bias_name = k.split('lora_')[0]+'bias'
if bias_name in my_state_dict:
to_return[bias_name] = my_state_dict[bias_name]
return to_return
else:
raise NotImplementedError
@dataclass
class LoRAConfig:
r: float = 0.0
alpha: float = 1.0
dropout: float = 0.0
class CausalSelfAttention(llama.CausalSelfAttention):
lora_config = None
def __init__(self, config: llama.LLaMAConfig) -> None:
"""Causal self-attention with calculating qkv matrices with a single matrix* and Low Ranking Adaptation for
parameter-efficient fine-tuning.
*Instead of creating multiple heads and concatenating the result (in addition to creating separate matrices for
query, key and value for each head) we can do this in a single pass with a single weight matrix.
Args:
config:
``"block_size"``: size of the context of the model,
``"vocab_size"``: number of unique tokens,
``"padded_vocab_size"``: padded size of the vocabulary to the nearest multiple of 64 (leads to a greater performance),
``"n_layer"``: number of transformer blocks (self-attention + MLP),
``"n_head"``: number of heads in multi-head attention mechanism,
``"n_embd"``: size of the embedding: vector representation of each token.
"""
# Skip the parent class __init__ altogether and replace it to avoid
# useless allocations
nn.Module.__init__(self)
assert config.n_embd % config.n_head == 0
# key, query, value projections for all heads, but in a batch
self.c_attn = MergedLinear(
in_features=config.n_embd,
out_features=3 * config.n_embd,
r=self.lora_config.r,
lora_alpha=self.lora_config.alpha,
lora_dropout=self.lora_config.dropout,
enable_lora=[True, False, True],
fan_in_fan_out = False,
merge_weights=True,
bias=False)
# output projection
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=False)
# regularization
self.n_head = config.n_head
self.n_embd = config.n_embd
self.block_size = config.block_size
self.rope_cache = None
@contextmanager
def lora(r, alpha, dropout, enabled: bool = True):
"""Apply context manager under which you can instantiate the model with LoRA.
In a nutshell the code inside this function forces to use LoRA variant of causal self-attention
instead of the original one (without LoRA).
Args:
r: rank of the weight update matrices. To make sense of using LoRA the rank should be smaller than the rank of
the weights of the model. The rank can be as low as 1: https://arxiv.org/pdf/2106.09685.pdf (section 7.2)
alpha: alpha is needed for scaling updates as alpha/r
"This scaling helps to reduce the need to retune hyperparameters when we vary r"
https://arxiv.org/pdf/2106.09685.pdf (section 4.1)
dropout: dropout that is applied on the input in the LoRA branch (before multiplying by matrix A)
enabled: enables/disables LoRA
"""
if not enabled:
yield
return
CausalSelfAttention.lora_config = LoRAConfig(r=r, alpha=alpha, dropout=dropout)
# when entering context manager replace link to causal self-attention class from original
# to a variant with LoRA
causal_self_attention = llama.CausalSelfAttention
llama.CausalSelfAttention = CausalSelfAttention
yield
# when exiting context manager - restore link to original causal self-attention class
llama.CausalSelfAttention = causal_self_attention
CausalSelfAttention.lora_config = None
|