Spaces:
Runtime error
Runtime error
Create sescore_english_webnlg.py
Browse files- sescore_english_webnlg.py +135 -0
sescore_english_webnlg.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""SEScore: a text generation evaluation metric """
|
15 |
+
|
16 |
+
import evaluate
|
17 |
+
import datasets
|
18 |
+
|
19 |
+
import comet
|
20 |
+
from typing import Dict
|
21 |
+
import torch
|
22 |
+
from comet.encoders.base import Encoder
|
23 |
+
from comet.encoders.bert import BERTEncoder
|
24 |
+
from transformers import AutoModel, AutoTokenizer
|
25 |
+
|
26 |
+
class robertaEncoder(BERTEncoder):
|
27 |
+
def __init__(self, pretrained_model: str) -> None:
|
28 |
+
super(Encoder, self).__init__()
|
29 |
+
self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model)
|
30 |
+
self.model = AutoModel.from_pretrained(
|
31 |
+
pretrained_model, add_pooling_layer=False
|
32 |
+
)
|
33 |
+
self.model.encoder.output_hidden_states = True
|
34 |
+
|
35 |
+
@classmethod
|
36 |
+
def from_pretrained(cls, pretrained_model: str) -> Encoder:
|
37 |
+
return robertaEncoder(pretrained_model)
|
38 |
+
|
39 |
+
def forward(
|
40 |
+
self, input_ids: torch.Tensor, attention_mask: torch.Tensor, **kwargs
|
41 |
+
) -> Dict[str, torch.Tensor]:
|
42 |
+
last_hidden_states, _, all_layers = self.model(
|
43 |
+
input_ids=input_ids,
|
44 |
+
attention_mask=attention_mask,
|
45 |
+
output_hidden_states=True,
|
46 |
+
return_dict=False,
|
47 |
+
)
|
48 |
+
return {
|
49 |
+
"sentemb": last_hidden_states[:, 0, :],
|
50 |
+
"wordemb": last_hidden_states,
|
51 |
+
"all_layers": all_layers,
|
52 |
+
"attention_mask": attention_mask,
|
53 |
+
}
|
54 |
+
|
55 |
+
|
56 |
+
# TODO: Add BibTeX citation
|
57 |
+
_CITATION = """\
|
58 |
+
@inproceedings{xu-etal-2022-not,
|
59 |
+
title={Not All Errors are Equal: Learning Text Generation Metrics using Stratified Error Synthesis},
|
60 |
+
author={Xu, Wenda and Tuan, Yi-lin and Lu, Yujie and Saxon, Michael and Li, Lei and Wang, William Yang},
|
61 |
+
booktitle ={Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing},
|
62 |
+
month={dec},
|
63 |
+
year={2022},
|
64 |
+
url={https://arxiv.org/abs/2210.05035}
|
65 |
+
}
|
66 |
+
"""
|
67 |
+
|
68 |
+
_DESCRIPTION = """\
|
69 |
+
SEScore is an evaluation metric that trys to compute an overall score to measure text generation quality.
|
70 |
+
"""
|
71 |
+
|
72 |
+
_KWARGS_DESCRIPTION = """
|
73 |
+
Calculates how good are predictions given some references
|
74 |
+
Args:
|
75 |
+
predictions: list of candidate outputs
|
76 |
+
references: list of references
|
77 |
+
Returns:
|
78 |
+
{"mean_score": mean_score, "scores": scores}
|
79 |
+
|
80 |
+
Examples:
|
81 |
+
>>> import evaluate
|
82 |
+
>>> sescore = evaluate.load("xu1998hz/sescore")
|
83 |
+
>>> score = sescore.compute(
|
84 |
+
references=['sescore is a simple but effective next-generation text evaluation metric'],
|
85 |
+
predictions=['sescore is simple effective text evaluation metric for next generation']
|
86 |
+
)
|
87 |
+
"""
|
88 |
+
|
89 |
+
# TODO: Define external resources urls if needed
|
90 |
+
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
|
91 |
+
|
92 |
+
|
93 |
+
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
94 |
+
class SEScore(evaluate.Metric):
|
95 |
+
"""SEScore"""
|
96 |
+
|
97 |
+
def _info(self):
|
98 |
+
# TODO: Specifies the evaluate.EvaluationModuleInfo object
|
99 |
+
return evaluate.MetricInfo(
|
100 |
+
# This is the description that will appear on the modules page.
|
101 |
+
module_type="metric",
|
102 |
+
description=_DESCRIPTION,
|
103 |
+
citation=_CITATION,
|
104 |
+
inputs_description=_KWARGS_DESCRIPTION,
|
105 |
+
# This defines the format of each prediction and reference
|
106 |
+
features=datasets.Features({
|
107 |
+
'predictions': datasets.Value("string", id="sequence"),
|
108 |
+
'references': datasets.Value("string", id="sequence"),
|
109 |
+
}),
|
110 |
+
# Homepage of the module for documentation
|
111 |
+
homepage="http://module.homepage",
|
112 |
+
# Additional links to the codebase or references
|
113 |
+
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
|
114 |
+
reference_urls=["http://path.to.reference.url/new_module"]
|
115 |
+
)
|
116 |
+
|
117 |
+
def _download_and_prepare(self, dl_manager):
|
118 |
+
"""download SEScore checkpoints to compute the scores"""
|
119 |
+
# Download SEScore checkpoint
|
120 |
+
from comet import load_from_checkpoint
|
121 |
+
import os
|
122 |
+
from huggingface_hub import snapshot_download
|
123 |
+
# initialize roberta into str2encoder
|
124 |
+
comet.encoders.str2encoder['RoBERTa'] = robertaEncoder
|
125 |
+
destination = snapshot_download(repo_id="xu1998hz/sescore_english_webnlg17", revision="main")
|
126 |
+
self.scorer = load_from_checkpoint(f'{destination}/checkpoint/webnlg.ckpt')
|
127 |
+
|
128 |
+
def _compute(self, predictions, references, gpus=None, progress_bar=False):
|
129 |
+
if gpus is None:
|
130 |
+
gpus = 1 if torch.cuda.is_available() else 0
|
131 |
+
|
132 |
+
data = {"src": references, "mt": predictions}
|
133 |
+
data = [dict(zip(data, t)) for t in zip(*data.values())]
|
134 |
+
scores, mean_score = self.scorer.predict(data, gpus=gpus, progress_bar=progress_bar)
|
135 |
+
return {"mean_score": mean_score, "scores": scores}
|