|
import os |
|
import shutil |
|
import tempfile |
|
from pathlib import Path |
|
from unittest.mock import patch |
|
|
|
import ffmpy |
|
import numpy as np |
|
import pytest |
|
from gradio_client import media_data |
|
from PIL import Image, ImageCms |
|
|
|
from gradio import components, data_classes, processing_utils, utils |
|
from gradio.route_utils import API_PREFIX |
|
|
|
|
|
class TestTempFileManagement: |
|
def test_hash_file(self): |
|
h1 = processing_utils.hash_file("gradio/test_data/cheetah1.jpg") |
|
h2 = processing_utils.hash_file("gradio/test_data/cheetah1-copy.jpg") |
|
h3 = processing_utils.hash_file("gradio/test_data/cheetah2.jpg") |
|
assert h1 == h2 |
|
assert h1 != h3 |
|
|
|
def test_make_temp_copy_if_needed(self, gradio_temp_dir): |
|
f = processing_utils.save_file_to_cache( |
|
"gradio/test_data/cheetah1.jpg", cache_dir=gradio_temp_dir |
|
) |
|
try: |
|
os.remove(f) |
|
except OSError: |
|
pass |
|
|
|
f = processing_utils.save_file_to_cache( |
|
"gradio/test_data/cheetah1.jpg", cache_dir=gradio_temp_dir |
|
) |
|
assert len([f for f in gradio_temp_dir.glob("**/*") if f.is_file()]) == 1 |
|
|
|
assert Path(f).name == "cheetah1.jpg" |
|
|
|
f = processing_utils.save_file_to_cache( |
|
"gradio/test_data/cheetah1.jpg", cache_dir=gradio_temp_dir |
|
) |
|
assert len([f for f in gradio_temp_dir.glob("**/*") if f.is_file()]) == 1 |
|
|
|
f = processing_utils.save_file_to_cache( |
|
"gradio/test_data/cheetah1-copy.jpg", cache_dir=gradio_temp_dir |
|
) |
|
assert len([f for f in gradio_temp_dir.glob("**/*") if f.is_file()]) == 2 |
|
assert Path(f).name == "cheetah1-copy.jpg" |
|
|
|
def test_save_b64_to_cache(self, gradio_temp_dir): |
|
base64_file_1 = media_data.BASE64_IMAGE |
|
base64_file_2 = media_data.BASE64_AUDIO["data"] |
|
|
|
f = processing_utils.save_base64_to_cache( |
|
base64_file_1, cache_dir=gradio_temp_dir |
|
) |
|
try: |
|
os.remove(f) |
|
except OSError: |
|
pass |
|
|
|
f = processing_utils.save_base64_to_cache( |
|
base64_file_1, cache_dir=gradio_temp_dir |
|
) |
|
assert len([f for f in gradio_temp_dir.glob("**/*") if f.is_file()]) == 1 |
|
|
|
f = processing_utils.save_base64_to_cache( |
|
base64_file_1, cache_dir=gradio_temp_dir |
|
) |
|
assert len([f for f in gradio_temp_dir.glob("**/*") if f.is_file()]) == 1 |
|
|
|
f = processing_utils.save_base64_to_cache( |
|
base64_file_2, cache_dir=gradio_temp_dir |
|
) |
|
assert len([f for f in gradio_temp_dir.glob("**/*") if f.is_file()]) == 2 |
|
|
|
@pytest.mark.flaky |
|
def test_ssrf_protected_download(self, gradio_temp_dir): |
|
url1 = "https://raw.githubusercontent.com/gradio-app/gradio/main/gradio/test_data/test_image.png" |
|
url2 = "https://raw.githubusercontent.com/gradio-app/gradio/main/gradio/test_data/cheetah1.jpg" |
|
|
|
f = processing_utils.save_url_to_cache(url1, cache_dir=gradio_temp_dir) |
|
try: |
|
os.remove(f) |
|
except OSError: |
|
pass |
|
|
|
f = processing_utils.save_url_to_cache(url1, cache_dir=gradio_temp_dir) |
|
assert len([f for f in gradio_temp_dir.glob("**/*") if f.is_file()]) == 1 |
|
|
|
f = processing_utils.save_url_to_cache(url1, cache_dir=gradio_temp_dir) |
|
assert len([f for f in gradio_temp_dir.glob("**/*") if f.is_file()]) == 1 |
|
|
|
f = processing_utils.save_url_to_cache(url2, cache_dir=gradio_temp_dir) |
|
assert len([f for f in gradio_temp_dir.glob("**/*") if f.is_file()]) == 2 |
|
|
|
@pytest.mark.flaky |
|
def test_ssrf_protected_download_with_redirect(self, gradio_temp_dir): |
|
url = "https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/bread_small.png" |
|
processing_utils.save_url_to_cache(url, cache_dir=gradio_temp_dir) |
|
assert len([f for f in gradio_temp_dir.glob("**/*") if f.is_file()]) == 1 |
|
|
|
|
|
class TestImagePreprocessing: |
|
def test_encode_plot_to_base64(self): |
|
with utils.MatplotlibBackendMananger(): |
|
import matplotlib.pyplot as plt |
|
|
|
plt.plot([1, 2, 3, 4]) |
|
output_base64 = processing_utils.encode_plot_to_base64(plt) |
|
assert output_base64.startswith( |
|
"" |
|
) |
|
|
|
def test_save_pil_to_file_keeps_pnginfo(self, gradio_temp_dir): |
|
input_img = Image.open("gradio/test_data/test_image.png") |
|
input_img = input_img.convert("RGB") |
|
input_img.info = {"key1": "value1", "key2": "value2"} |
|
input_img.save(gradio_temp_dir / "test_test_image.png") |
|
|
|
file_obj = processing_utils.save_pil_to_cache( |
|
input_img, cache_dir=gradio_temp_dir, format="png" |
|
) |
|
output_img = Image.open(file_obj) |
|
|
|
assert output_img.info == input_img.info |
|
|
|
def test_save_pil_to_file_keeps_all_gif_frames(self, gradio_temp_dir): |
|
input_img = Image.open("gradio/test_data/rectangles.gif") |
|
file_obj = processing_utils.save_pil_to_cache( |
|
input_img, cache_dir=gradio_temp_dir, format="gif" |
|
) |
|
output_img = Image.open(file_obj) |
|
assert output_img.n_frames == input_img.n_frames == 3 |
|
|
|
def test_np_pil_encode_to_the_same(self, gradio_temp_dir): |
|
arr = np.random.randint(0, 255, size=(100, 100, 3), dtype=np.uint8) |
|
pil = Image.fromarray(arr) |
|
assert processing_utils.save_pil_to_cache( |
|
pil, cache_dir=gradio_temp_dir |
|
) == processing_utils.save_img_array_to_cache(arr, cache_dir=gradio_temp_dir) |
|
|
|
def test_encode_pil_to_temp_file_metadata_color_profile(self, gradio_temp_dir): |
|
|
|
img = Image.open("gradio/test_data/test_image.png") |
|
img_metadata = Image.open("gradio/test_data/test_image.png") |
|
img_metadata.info = {"key1": "value1", "key2": "value2"} |
|
|
|
|
|
profile = ImageCms.createProfile("sRGB") |
|
profile2 = ImageCms.ImageCmsProfile(profile) |
|
img.save( |
|
gradio_temp_dir / "img_color_profile.png", icc_profile=profile2.tobytes() |
|
) |
|
img_cp1 = Image.open(str(gradio_temp_dir / "img_color_profile.png")) |
|
|
|
|
|
profile = ImageCms.createProfile("XYZ") |
|
profile2 = ImageCms.ImageCmsProfile(profile) |
|
img.save( |
|
gradio_temp_dir / "img_color_profile_2.png", icc_profile=profile2.tobytes() |
|
) |
|
img_cp2 = Image.open(str(gradio_temp_dir / "img_color_profile_2.png")) |
|
|
|
img_path = processing_utils.save_pil_to_cache( |
|
img, cache_dir=gradio_temp_dir, format="png" |
|
) |
|
img_metadata_path = processing_utils.save_pil_to_cache( |
|
img_metadata, cache_dir=gradio_temp_dir, format="png" |
|
) |
|
img_cp1_path = processing_utils.save_pil_to_cache( |
|
img_cp1, cache_dir=gradio_temp_dir, format="png" |
|
) |
|
img_cp2_path = processing_utils.save_pil_to_cache( |
|
img_cp2, cache_dir=gradio_temp_dir, format="png" |
|
) |
|
|
|
assert len({img_path, img_metadata_path, img_cp1_path, img_cp2_path}) == 4 |
|
|
|
def test_resize_and_crop(self): |
|
img = Image.open("gradio/test_data/test_image.png") |
|
new_img = processing_utils.resize_and_crop(img, (20, 20)) |
|
assert new_img.size == (20, 20) |
|
with pytest.raises(ValueError): |
|
processing_utils.resize_and_crop( |
|
**{"img": img, "size": (20, 20), "crop_type": "test"} |
|
) |
|
|
|
|
|
class TestAudioPreprocessing: |
|
def test_audio_from_file(self): |
|
audio = processing_utils.audio_from_file("gradio/test_data/test_audio.wav") |
|
assert audio[0] == 22050 |
|
assert isinstance(audio[1], np.ndarray) |
|
|
|
def test_audio_to_file(self): |
|
audio = processing_utils.audio_from_file("gradio/test_data/test_audio.wav") |
|
processing_utils.audio_to_file(audio[0], audio[1], "test_audio_to_file") |
|
assert os.path.exists("test_audio_to_file") |
|
os.remove("test_audio_to_file") |
|
|
|
def test_convert_to_16_bit_wav(self): |
|
|
|
audio = np.random.randint(-100, 100, size=(100), dtype="int16") |
|
audio[0] = -32767 |
|
audio[1] = 32766 |
|
|
|
audio_ = audio.astype("float64") |
|
audio_ = processing_utils.convert_to_16_bit_wav(audio_) |
|
assert np.allclose(audio, audio_) |
|
assert audio_.dtype == "int16" |
|
|
|
audio_ = audio.astype("float32") |
|
audio_ = processing_utils.convert_to_16_bit_wav(audio_) |
|
assert np.allclose(audio, audio_) |
|
assert audio_.dtype == "int16" |
|
|
|
audio_ = processing_utils.convert_to_16_bit_wav(audio) |
|
assert np.allclose(audio, audio_) |
|
assert audio_.dtype == "int16" |
|
|
|
|
|
class TestOutputPreprocessing: |
|
float_dtype_list = [ |
|
float, |
|
float, |
|
np.double, |
|
np.single, |
|
np.float32, |
|
np.float64, |
|
"float32", |
|
"float64", |
|
] |
|
|
|
def test_float_conversion_dtype(self): |
|
"""Test any conversion from a float dtype to an other.""" |
|
|
|
x = np.array([-1, 1]) |
|
|
|
dtype_combin = np.array( |
|
np.meshgrid( |
|
TestOutputPreprocessing.float_dtype_list, |
|
TestOutputPreprocessing.float_dtype_list, |
|
) |
|
).T.reshape(-1, 2) |
|
|
|
for dtype_in, dtype_out in dtype_combin: |
|
x = x.astype(dtype_in) |
|
y = processing_utils._convert(x, dtype_out) |
|
assert y.dtype == np.dtype(dtype_out) |
|
|
|
def test_subclass_conversion(self): |
|
"""Check subclass conversion behavior""" |
|
x = np.array([-1, 1]) |
|
for dtype in TestOutputPreprocessing.float_dtype_list: |
|
x = x.astype(dtype) |
|
y = processing_utils._convert(x, np.floating) |
|
assert y.dtype == x.dtype |
|
|
|
|
|
class TestVideoProcessing: |
|
def test_video_has_playable_codecs(self, test_file_dir): |
|
assert processing_utils.video_is_playable( |
|
str(test_file_dir / "video_sample.mp4") |
|
) |
|
assert processing_utils.video_is_playable( |
|
str(test_file_dir / "video_sample.ogg") |
|
) |
|
assert processing_utils.video_is_playable( |
|
str(test_file_dir / "video_sample.webm") |
|
) |
|
assert not processing_utils.video_is_playable( |
|
str(test_file_dir / "bad_video_sample.mp4") |
|
) |
|
|
|
def raise_ffmpy_runtime_exception(*args, **kwargs): |
|
raise ffmpy.FFRuntimeError("", "", "", "") |
|
|
|
@pytest.mark.parametrize( |
|
"exception_to_raise", [raise_ffmpy_runtime_exception, KeyError(), IndexError()] |
|
) |
|
def test_video_has_playable_codecs_catches_exceptions( |
|
self, exception_to_raise, test_file_dir |
|
): |
|
with ( |
|
patch("ffmpy.FFprobe.run", side_effect=exception_to_raise), |
|
tempfile.NamedTemporaryFile( |
|
suffix="out.avi", delete=False |
|
) as tmp_not_playable_vid, |
|
): |
|
shutil.copy( |
|
str(test_file_dir / "bad_video_sample.mp4"), |
|
tmp_not_playable_vid.name, |
|
) |
|
assert processing_utils.video_is_playable(tmp_not_playable_vid.name) |
|
|
|
def test_convert_video_to_playable_mp4(self, test_file_dir): |
|
with tempfile.NamedTemporaryFile( |
|
suffix="out.avi", delete=False |
|
) as tmp_not_playable_vid: |
|
shutil.copy( |
|
str(test_file_dir / "bad_video_sample.mp4"), tmp_not_playable_vid.name |
|
) |
|
with patch("os.remove", wraps=os.remove) as mock_remove: |
|
playable_vid = processing_utils.convert_video_to_playable_mp4( |
|
tmp_not_playable_vid.name |
|
) |
|
|
|
assert not Path(mock_remove.call_args[0][0]).exists() |
|
assert processing_utils.video_is_playable(playable_vid) |
|
|
|
@patch("ffmpy.FFmpeg.run", side_effect=raise_ffmpy_runtime_exception) |
|
def test_video_conversion_returns_original_video_if_fails( |
|
self, mock_run, test_file_dir |
|
): |
|
with tempfile.NamedTemporaryFile( |
|
suffix="out.avi", delete=False |
|
) as tmp_not_playable_vid: |
|
shutil.copy( |
|
str(test_file_dir / "bad_video_sample.mp4"), tmp_not_playable_vid.name |
|
) |
|
playable_vid = processing_utils.convert_video_to_playable_mp4( |
|
tmp_not_playable_vid.name |
|
) |
|
|
|
assert Path(playable_vid).suffix == ".avi" |
|
|
|
|
|
def test_add_root_url(): |
|
data = { |
|
"file": { |
|
"path": "path", |
|
"url": f"{API_PREFIX}/file=path", |
|
"meta": {"_type": "gradio.FileData"}, |
|
}, |
|
"file2": { |
|
"path": "path2", |
|
"url": "https://www.gradio.app", |
|
"meta": {"_type": "gradio.FileData"}, |
|
}, |
|
} |
|
root_url = "http://localhost:7860" |
|
expected = { |
|
"file": { |
|
"path": "path", |
|
"url": f"{root_url}{API_PREFIX}/file=path", |
|
"meta": {"_type": "gradio.FileData"}, |
|
}, |
|
"file2": { |
|
"path": "path2", |
|
"url": "https://www.gradio.app", |
|
"meta": {"_type": "gradio.FileData"}, |
|
}, |
|
} |
|
assert processing_utils.add_root_url(data, root_url, None) == expected |
|
new_root_url = "https://1234.gradio.live" |
|
new_expected = { |
|
"file": { |
|
"path": "path", |
|
"url": f"{new_root_url}{API_PREFIX}/file=path", |
|
"meta": {"_type": "gradio.FileData"}, |
|
}, |
|
"file2": { |
|
"path": "path2", |
|
"url": "https://www.gradio.app", |
|
"meta": {"_type": "gradio.FileData"}, |
|
}, |
|
} |
|
assert ( |
|
processing_utils.add_root_url(expected, new_root_url, root_url) == new_expected |
|
) |
|
|
|
|
|
def test_hash_url_encodes_url(): |
|
assert processing_utils.hash_url( |
|
"https://www.gradio.app/image 1.jpg" |
|
) == processing_utils.hash_bytes(b"https://www.gradio.app/image 1.jpg") |
|
|
|
|
|
@pytest.mark.asyncio |
|
async def test_json_data_not_moved_to_cache(): |
|
data = data_classes.JsonData( |
|
root={ |
|
"file": { |
|
"path": "path", |
|
"url": f"{API_PREFIX}/file=path", |
|
"meta": {"_type": "gradio.FileData"}, |
|
} |
|
} |
|
) |
|
assert ( |
|
processing_utils.move_files_to_cache(data, components.Number(), False) == data |
|
) |
|
assert processing_utils.move_files_to_cache(data, components.Number(), True) == data |
|
assert ( |
|
await processing_utils.async_move_files_to_cache( |
|
data, components.Number(), False |
|
) |
|
== data |
|
) |
|
assert ( |
|
await processing_utils.async_move_files_to_cache( |
|
data, components.Number(), True |
|
) |
|
== data |
|
) |
|
|
|
|
|
@pytest.mark.asyncio |
|
@pytest.mark.parametrize( |
|
"url", |
|
[ |
|
"https://localhost", |
|
"http://127.0.0.1/file/a/b/c", |
|
"http://[::1]", |
|
"https://192.168.0.1", |
|
"http://10.0.0.1?q=a", |
|
"http://192.168.1.250.nip.io", |
|
], |
|
) |
|
async def test_local_urls_fail(url): |
|
with pytest.raises(ValueError, match="failed validation"): |
|
await processing_utils.async_validate_url(url) |
|
|
|
|
|
@pytest.mark.asyncio |
|
@pytest.mark.parametrize( |
|
"url", |
|
[ |
|
"https://google.com", |
|
"https://8.8.8.8/", |
|
"http://93.184.215.14.nip.io/", |
|
"https://huggingface.co/datasets/dylanebert/3dgs/resolve/main/luigi/luigi.ply", |
|
], |
|
) |
|
async def test_public_urls_pass(url): |
|
await processing_utils.async_validate_url(url) |
|
|
|
|
|
def test_public_request_pass(): |
|
tempdir = tempfile.TemporaryDirectory() |
|
file = processing_utils.ssrf_protected_download( |
|
"https://en.wikipedia.org/static/images/icons/wikipedia.png", tempdir.name |
|
) |
|
assert os.path.exists(file) |
|
assert os.path.getsize(file) == 13444 |
|
|
|
|
|
@pytest.mark.asyncio |
|
async def test_async_public_request_pass(): |
|
tempdir = tempfile.TemporaryDirectory() |
|
file = await processing_utils.async_ssrf_protected_download( |
|
"https://en.wikipedia.org/static/images/icons/wikipedia.png", tempdir.name |
|
) |
|
assert os.path.exists(file) |
|
assert os.path.getsize(file) == 13444 |
|
|
|
|
|
def test_private_request_fail(): |
|
with pytest.raises(ValueError, match="failed validation"): |
|
tempdir = tempfile.TemporaryDirectory() |
|
processing_utils.ssrf_protected_download( |
|
"http://192.168.1.250.nip.io/image.png", tempdir.name |
|
) |
|
|
|
|
|
@pytest.mark.asyncio |
|
async def test_async_private_request_fail(): |
|
with pytest.raises(ValueError, match="failed validation"): |
|
tempdir = tempfile.TemporaryDirectory() |
|
await processing_utils.async_ssrf_protected_download( |
|
"http://192.168.1.250.nip.io/image.png", tempdir.name |
|
) |
|
|