my_gradio / test /components /test_gallery.py
xray918's picture
Upload folder using huggingface_hub
0ad74ed verified
from pathlib import Path
import numpy as np
import PIL
import gradio as gr
from gradio.components.gallery import GalleryImage
from gradio.data_classes import FileData
class TestGallery:
def test_postprocess(self):
url = "https://huggingface.co/Norod78/SDXL-VintageMagStyle-Lora/resolve/main/Examples/00015-20230906102032-7778-Wonderwoman VintageMagStyle _lora_SDXL-VintageMagStyle-Lora_1_, Very detailed, clean, high quality, sharp image.jpg"
gallery = gr.Gallery([url])
assert gallery.get_config()["value"] == [
{
"image": {
"path": url,
"orig_name": "00015-20230906102032-7778-Wonderwoman VintageMagStyle _lora_SDXL-VintageMagStyle-Lora_1_, Very detailed, clean, high quality, sharp image.jpg",
"mime_type": "image/jpeg",
"size": None,
"url": url,
"is_stream": False,
"meta": {"_type": "gradio.FileData"},
},
"caption": None,
}
]
def test_gallery(self):
gallery = gr.Gallery()
Path(Path(__file__).parent, "test_files")
postprocessed_gallery = gallery.postprocess(
[
(str(Path("test/test_files/foo.png")), "foo_caption"),
(Path("test/test_files/bar.png"), "bar_caption"),
str(Path("test/test_files/baz.png")),
Path("test/test_files/qux.png"),
]
).model_dump()
# Using str(Path(...)) to ensure that the test passes on all platforms
assert postprocessed_gallery == [
{
"image": {
"path": str(Path("test") / "test_files" / "foo.png"),
"orig_name": "foo.png",
"mime_type": "image/png",
"size": None,
"url": None,
"is_stream": False,
"meta": {"_type": "gradio.FileData"},
},
"caption": "foo_caption",
},
{
"image": {
"path": str(Path("test") / "test_files" / "bar.png"),
"orig_name": "bar.png",
"mime_type": "image/png",
"size": None,
"url": None,
"is_stream": False,
"meta": {"_type": "gradio.FileData"},
},
"caption": "bar_caption",
},
{
"image": {
"path": str(Path("test") / "test_files" / "baz.png"),
"orig_name": "baz.png",
"mime_type": "image/png",
"size": None,
"url": None,
"is_stream": False,
"meta": {"_type": "gradio.FileData"},
},
"caption": None,
},
{
"image": {
"path": str(Path("test") / "test_files" / "qux.png"),
"orig_name": "qux.png",
"mime_type": "image/png",
"size": None,
"url": None,
"is_stream": False,
"meta": {"_type": "gradio.FileData"},
},
"caption": None,
},
]
def test_gallery_preprocess(self):
from gradio.components.gallery import GalleryData, GalleryImage
gallery = gr.Gallery()
img = GalleryImage(image=FileData(path="test/test_files/bus.png"))
data = GalleryData(root=[img])
assert (preprocessed := gallery.preprocess(data))
assert preprocessed[0][0] == "test/test_files/bus.png"
gallery = gr.Gallery(type="numpy")
assert (preprocessed := gallery.preprocess(data))
assert (
preprocessed[0][0] == np.array(PIL.Image.open("test/test_files/bus.png")) # type: ignore
).all() # type: ignore
gallery = gr.Gallery(type="pil")
assert (preprocess := gallery.preprocess(data))
assert preprocess[0][0] == PIL.Image.open( # type: ignore
"test/test_files/bus.png"
)
img_captions = GalleryImage(
image=FileData(path="test/test_files/bus.png"), caption="bus"
)
data = GalleryData(root=[img_captions])
assert (preprocess := gr.Gallery().preprocess(data))
assert preprocess[0] == ("test/test_files/bus.png", "bus")
def test_gallery_format(self):
gallery = gr.Gallery(format="jpeg")
output = gallery.postprocess(
[np.random.randint(0, 255, (100, 100, 3), dtype=np.uint8)]
)
if type(output.root[0]) == GalleryImage:
assert output.root[0].image.path.endswith(".jpeg")