import gradio as gr | |
from transformers import pipeline | |
import numpy as np | |
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en") | |
def transcribe(audio): | |
sr, y = audio | |
# Convert to mono if stereo | |
if y.ndim > 1: | |
y = y.mean(axis=1) | |
y = y.astype(np.float32) | |
y /= np.max(np.abs(y)) | |
return transcriber({"sampling_rate": sr, "raw": y})["text"] # type: ignore | |
demo = gr.Interface( | |
transcribe, | |
gr.Audio(sources="microphone"), | |
"text", | |
) | |
if __name__ == "__main__": | |
demo.launch() | |