Spaces:
Build error
Build error
Upload with huggingface_hub
Browse files- .ipynb_checkpoints/gradio_demo-checkpoint.ipynb +294 -0
- .ipynb_checkpoints/upload-checkpoint.ipynb +6 -0
- README.md +7 -13
- app.py +29 -56
- configs/med_config.json +21 -0
- configs/q2l_config.json +23 -0
- configs/swin/config_swinB_224.json +10 -0
- configs/swin/config_swinB_384.json +10 -0
- configs/swin/config_swinB_480.json +9 -0
- configs/swin/config_swinB_576.json +9 -0
- configs/swin/config_swinB_608.json +9 -0
- configs/tag2text_caption.yaml +33 -0
- data/__pycache__/tag_class.cpython-37.pyc +0 -0
- data/tag_class.py +3437 -0
- gradio_demo.ipynb +324 -0
- images/COCO_val2014_000000483108.jpg +0 -0
- images/COCO_val2014_000000551338.jpg +0 -0
- models/__pycache__/med.cpython-37.pyc +0 -0
- models/__pycache__/swin_transformer.cpython-37.pyc +0 -0
- models/__pycache__/tag2text.cpython-37.pyc +0 -0
- models/__pycache__/vit.cpython-37.pyc +0 -0
- models/med.py +1031 -0
- models/swin_transformer.py +654 -0
- models/tag2text.py +415 -0
- models/vit.py +305 -0
- requirements.txt +1 -4
- upload.ipynb +87 -0
.ipynb_checkpoints/gradio_demo-checkpoint.ipynb
ADDED
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 2,
|
6 |
+
"id": "35d8939e-909d-45d8-bcf9-0ff1dccacfdf",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stderr",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertModel: ['bert.encoder.layer.6.output.LayerNorm.weight', 'bert.encoder.layer.6.attention.self.query.weight', 'bert.encoder.layer.3.attention.output.LayerNorm.bias', 'bert.encoder.layer.4.attention.self.value.bias', 'bert.encoder.layer.2.attention.self.value.bias', 'bert.encoder.layer.10.intermediate.dense.bias', 'bert.encoder.layer.3.intermediate.dense.bias', 'bert.encoder.layer.6.attention.self.value.weight', 'bert.encoder.layer.11.output.dense.bias', 'bert.encoder.layer.3.attention.self.value.bias', 'bert.encoder.layer.7.attention.self.value.bias', 'bert.encoder.layer.2.attention.output.dense.weight', 'bert.encoder.layer.11.attention.output.dense.weight', 'bert.encoder.layer.6.output.dense.bias', 'bert.encoder.layer.6.attention.output.dense.bias', 'bert.encoder.layer.4.output.LayerNorm.weight', 'bert.encoder.layer.9.output.dense.weight', 'bert.encoder.layer.9.attention.self.key.bias', 'bert.encoder.layer.3.attention.self.key.weight', 'bert.encoder.layer.3.intermediate.dense.weight', 'bert.encoder.layer.8.output.LayerNorm.weight', 'cls.seq_relationship.bias', 'bert.encoder.layer.6.attention.self.value.bias', 'bert.encoder.layer.10.output.LayerNorm.bias', 'bert.encoder.layer.10.attention.output.LayerNorm.bias', 'bert.encoder.layer.8.attention.self.key.bias', 'bert.encoder.layer.3.attention.self.query.weight', 'bert.encoder.layer.8.intermediate.dense.weight', 'bert.encoder.layer.8.attention.output.LayerNorm.bias', 'bert.encoder.layer.7.attention.output.dense.weight', 'bert.encoder.layer.9.attention.self.query.bias', 'bert.encoder.layer.2.output.dense.bias', 'bert.encoder.layer.6.attention.self.key.bias', 'bert.encoder.layer.4.attention.self.query.weight', 'bert.encoder.layer.2.attention.self.query.weight', 'bert.encoder.layer.11.attention.self.query.weight', 'bert.encoder.layer.3.attention.output.dense.weight', 'bert.encoder.layer.11.attention.output.LayerNorm.bias', 'bert.encoder.layer.10.attention.self.key.weight', 'bert.encoder.layer.3.attention.self.value.weight', 'bert.encoder.layer.5.attention.self.key.bias', 'bert.encoder.layer.5.intermediate.dense.bias', 'bert.encoder.layer.7.attention.self.key.weight', 'bert.encoder.layer.5.attention.self.value.weight', 'bert.encoder.layer.2.attention.output.dense.bias', 'bert.encoder.layer.2.output.dense.weight', 'bert.encoder.layer.6.attention.output.dense.weight', 'bert.encoder.layer.2.intermediate.dense.bias', 'bert.encoder.layer.9.attention.self.value.bias', 'bert.encoder.layer.6.intermediate.dense.bias', 'bert.encoder.layer.9.attention.output.dense.bias', 'bert.encoder.layer.7.attention.self.query.weight', 'bert.encoder.layer.8.attention.self.value.bias', 'bert.encoder.layer.4.attention.self.key.bias', 'bert.pooler.dense.bias', 'bert.encoder.layer.10.attention.output.dense.bias', 'bert.encoder.layer.5.output.LayerNorm.weight', 'cls.seq_relationship.weight', 'bert.encoder.layer.11.intermediate.dense.weight', 'bert.encoder.layer.2.attention.self.key.bias', 'bert.encoder.layer.10.attention.output.LayerNorm.weight', 'bert.encoder.layer.10.output.dense.bias', 'bert.encoder.layer.10.intermediate.dense.weight', 'bert.encoder.layer.4.intermediate.dense.weight', 'bert.encoder.layer.3.attention.self.key.bias', 'bert.encoder.layer.5.attention.self.query.weight', 'bert.encoder.layer.9.intermediate.dense.weight', 'bert.pooler.dense.weight', 'bert.encoder.layer.7.attention.output.LayerNorm.bias', 'bert.encoder.layer.11.output.LayerNorm.weight', 'bert.encoder.layer.5.attention.output.LayerNorm.bias', 'cls.predictions.transform.dense.weight', 'bert.encoder.layer.10.attention.self.value.bias', 'bert.encoder.layer.4.attention.self.query.bias', 'bert.encoder.layer.3.attention.self.query.bias', 'bert.encoder.layer.10.output.LayerNorm.weight', 'bert.encoder.layer.10.attention.self.key.bias', 'bert.encoder.layer.8.attention.self.value.weight', 'bert.encoder.layer.4.output.dense.bias', 'bert.encoder.layer.7.attention.self.key.bias', 'bert.encoder.layer.8.intermediate.dense.bias', 'bert.encoder.layer.7.intermediate.dense.weight', 'bert.encoder.layer.2.attention.self.key.weight', 'bert.encoder.layer.4.attention.output.dense.bias', 'bert.encoder.layer.6.output.dense.weight', 'bert.encoder.layer.8.attention.output.LayerNorm.weight', 'bert.encoder.layer.11.output.LayerNorm.bias', 'bert.encoder.layer.10.output.dense.weight', 'bert.encoder.layer.4.attention.output.LayerNorm.bias', 'bert.encoder.layer.11.output.dense.weight', 'bert.encoder.layer.8.output.dense.weight', 'bert.encoder.layer.5.attention.self.value.bias', 'bert.encoder.layer.4.intermediate.dense.bias', 'bert.encoder.layer.5.attention.self.key.weight', 'bert.encoder.layer.4.attention.self.key.weight', 'bert.encoder.layer.7.attention.self.query.bias', 'bert.encoder.layer.10.attention.self.query.weight', 'bert.encoder.layer.5.output.dense.bias', 'bert.encoder.layer.5.attention.output.dense.weight', 'bert.encoder.layer.7.output.dense.bias', 'bert.embeddings.token_type_embeddings.weight', 'bert.encoder.layer.8.output.dense.bias', 'bert.encoder.layer.7.attention.output.LayerNorm.weight', 'bert.encoder.layer.6.attention.self.key.weight', 'bert.encoder.layer.11.attention.output.LayerNorm.weight', 'bert.encoder.layer.7.output.LayerNorm.bias', 'bert.encoder.layer.9.attention.output.LayerNorm.weight', 'bert.encoder.layer.3.output.dense.bias', 'bert.encoder.layer.8.attention.self.query.bias', 'bert.encoder.layer.6.attention.self.query.bias', 'bert.encoder.layer.4.attention.output.dense.weight', 'bert.encoder.layer.6.intermediate.dense.weight', 'bert.encoder.layer.8.attention.output.dense.bias', 'bert.encoder.layer.10.attention.self.query.bias', 'bert.encoder.layer.8.attention.output.dense.weight', 'bert.encoder.layer.9.attention.output.dense.weight', 'bert.encoder.layer.5.output.dense.weight', 'cls.predictions.bias', 'cls.predictions.transform.LayerNorm.weight', 'bert.encoder.layer.9.attention.self.query.weight', 'bert.encoder.layer.2.attention.output.LayerNorm.bias', 'bert.encoder.layer.4.attention.self.value.weight', 'bert.encoder.layer.6.output.LayerNorm.bias', 'bert.encoder.layer.10.attention.output.dense.weight', 'bert.encoder.layer.5.attention.self.query.bias', 'bert.encoder.layer.3.output.dense.weight', 'bert.encoder.layer.2.output.LayerNorm.weight', 'bert.encoder.layer.4.output.LayerNorm.bias', 'bert.encoder.layer.9.attention.self.value.weight', 'bert.encoder.layer.6.attention.output.LayerNorm.bias', 'bert.encoder.layer.11.attention.output.dense.bias', 'bert.encoder.layer.2.attention.output.LayerNorm.weight', 'bert.encoder.layer.7.output.LayerNorm.weight', 'bert.encoder.layer.2.output.LayerNorm.bias', 'bert.encoder.layer.3.output.LayerNorm.bias', 'cls.predictions.decoder.weight', 'bert.encoder.layer.5.attention.output.LayerNorm.weight', 'bert.encoder.layer.2.intermediate.dense.weight', 'bert.encoder.layer.11.attention.self.key.weight', 'bert.encoder.layer.11.attention.self.value.weight', 'bert.encoder.layer.9.intermediate.dense.bias', 'bert.encoder.layer.11.intermediate.dense.bias', 'bert.encoder.layer.11.attention.self.key.bias', 'bert.encoder.layer.2.attention.self.value.weight', 'bert.encoder.layer.3.output.LayerNorm.weight', 'bert.encoder.layer.9.output.LayerNorm.bias', 'bert.encoder.layer.5.intermediate.dense.weight', 'bert.encoder.layer.8.output.LayerNorm.bias', 'bert.encoder.layer.9.output.LayerNorm.weight', 'bert.encoder.layer.7.attention.self.value.weight', 'bert.encoder.layer.9.output.dense.bias', 'bert.encoder.layer.7.intermediate.dense.bias', 'bert.encoder.layer.6.attention.output.LayerNorm.weight', 'bert.encoder.layer.8.attention.self.query.weight', 'bert.encoder.layer.9.attention.self.key.weight', 'bert.encoder.layer.4.output.dense.weight', 'bert.encoder.layer.2.attention.self.query.bias', 'bert.encoder.layer.9.attention.output.LayerNorm.bias', 'bert.encoder.layer.3.attention.output.dense.bias', 'bert.encoder.layer.7.output.dense.weight', 'bert.encoder.layer.10.attention.self.value.weight', 'bert.encoder.layer.8.attention.self.key.weight', 'bert.encoder.layer.11.attention.self.value.bias', 'cls.predictions.transform.LayerNorm.bias', 'bert.encoder.layer.3.attention.output.LayerNorm.weight', 'bert.encoder.layer.5.attention.output.dense.bias', 'bert.encoder.layer.4.attention.output.LayerNorm.weight', 'bert.encoder.layer.11.attention.self.query.bias', 'cls.predictions.transform.dense.bias', 'bert.encoder.layer.7.attention.output.dense.bias', 'bert.encoder.layer.5.output.LayerNorm.bias']\n",
|
14 |
+
"- This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
15 |
+
"- This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
16 |
+
"Some weights of BertModel were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['bert.encoder.layer.1.crossattention.output.LayerNorm.bias', 'bert.encoder.layer.0.crossattention.self.query.bias', 'bert.encoder.layer.0.crossattention.output.dense.bias', 'bert.encoder.layer.1.crossattention.self.query.weight', 'bert.encoder.layer.0.crossattention.output.dense.weight', 'bert.encoder.layer.1.crossattention.output.LayerNorm.weight', 'bert.encoder.layer.0.crossattention.self.key.weight', 'bert.encoder.layer.1.crossattention.output.dense.weight', 'bert.encoder.layer.0.crossattention.self.query.weight', 'bert.encoder.layer.0.crossattention.output.LayerNorm.bias', 'bert.encoder.layer.1.crossattention.self.key.weight', 'bert.encoder.layer.0.crossattention.self.key.bias', 'bert.encoder.layer.1.crossattention.output.dense.bias', 'bert.encoder.layer.0.crossattention.output.LayerNorm.weight', 'bert.encoder.layer.1.crossattention.self.value.weight', 'bert.encoder.layer.1.crossattention.self.value.bias', 'bert.encoder.layer.0.crossattention.self.value.bias', 'bert.encoder.layer.0.crossattention.self.value.weight', 'bert.encoder.layer.1.crossattention.self.query.bias', 'bert.encoder.layer.1.crossattention.self.key.bias']\n",
|
17 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
18 |
+
]
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"name": "stdout",
|
22 |
+
"output_type": "stream",
|
23 |
+
"text": [
|
24 |
+
"/encoder/layer/0/crossattention/self/query is tied\n",
|
25 |
+
"/encoder/layer/0/crossattention/self/key is tied\n",
|
26 |
+
"/encoder/layer/0/crossattention/self/value is tied\n",
|
27 |
+
"/encoder/layer/0/crossattention/output/dense is tied\n",
|
28 |
+
"/encoder/layer/0/crossattention/output/LayerNorm is tied\n",
|
29 |
+
"/encoder/layer/0/intermediate/dense is tied\n",
|
30 |
+
"/encoder/layer/0/output/dense is tied\n",
|
31 |
+
"/encoder/layer/0/output/LayerNorm is tied\n",
|
32 |
+
"/encoder/layer/1/crossattention/self/query is tied\n",
|
33 |
+
"/encoder/layer/1/crossattention/self/key is tied\n",
|
34 |
+
"/encoder/layer/1/crossattention/self/value is tied\n",
|
35 |
+
"/encoder/layer/1/crossattention/output/dense is tied\n",
|
36 |
+
"/encoder/layer/1/crossattention/output/LayerNorm is tied\n",
|
37 |
+
"/encoder/layer/1/intermediate/dense is tied\n",
|
38 |
+
"/encoder/layer/1/output/dense is tied\n",
|
39 |
+
"/encoder/layer/1/output/LayerNorm is tied\n",
|
40 |
+
"--------------\n",
|
41 |
+
"/home/notebook/code/personal/S9049611/BLIP/output/blip_tagtotext_14m/blip_tagtotext_encoderdiv_tar_random_swin/caption_coco_finetune_tagparse_tagfinetune_threshold075_bceloss_tagsingle_5e6_epoch19_negative_1_05_pos_1_10/checkpoint_05.pth\n",
|
42 |
+
"--------------\n",
|
43 |
+
"load checkpoint from /home/notebook/code/personal/S9049611/BLIP/output/blip_tagtotext_14m/blip_tagtotext_encoderdiv_tar_random_swin/caption_coco_finetune_tagparse_tagfinetune_threshold075_bceloss_tagsingle_5e6_epoch19_negative_1_05_pos_1_10/checkpoint_05.pth\n",
|
44 |
+
"vit: swin_b\n",
|
45 |
+
"msg_v2 _IncompatibleKeys(missing_keys=['visual_encoder.layers.0.blocks.0.attn.relative_position_index', 'visual_encoder.layers.0.blocks.1.attn_mask', 'visual_encoder.layers.0.blocks.1.attn.relative_position_index', 'visual_encoder.layers.1.blocks.0.attn.relative_position_index', 'visual_encoder.layers.1.blocks.1.attn_mask', 'visual_encoder.layers.1.blocks.1.attn.relative_position_index', 'visual_encoder.layers.2.blocks.0.attn.relative_position_index', 'visual_encoder.layers.2.blocks.1.attn_mask', 'visual_encoder.layers.2.blocks.1.attn.relative_position_index', 'visual_encoder.layers.2.blocks.2.attn.relative_position_index', 'visual_encoder.layers.2.blocks.3.attn_mask', 'visual_encoder.layers.2.blocks.3.attn.relative_position_index', 'visual_encoder.layers.2.blocks.4.attn.relative_position_index', 'visual_encoder.layers.2.blocks.5.attn_mask', 'visual_encoder.layers.2.blocks.5.attn.relative_position_index', 'visual_encoder.layers.2.blocks.6.attn.relative_position_index', 'visual_encoder.layers.2.blocks.7.attn_mask', 'visual_encoder.layers.2.blocks.7.attn.relative_position_index', 'visual_encoder.layers.2.blocks.8.attn.relative_position_index', 'visual_encoder.layers.2.blocks.9.attn_mask', 'visual_encoder.layers.2.blocks.9.attn.relative_position_index', 'visual_encoder.layers.2.blocks.10.attn.relative_position_index', 'visual_encoder.layers.2.blocks.11.attn_mask', 'visual_encoder.layers.2.blocks.11.attn.relative_position_index', 'visual_encoder.layers.2.blocks.12.attn.relative_position_index', 'visual_encoder.layers.2.blocks.13.attn_mask', 'visual_encoder.layers.2.blocks.13.attn.relative_position_index', 'visual_encoder.layers.2.blocks.14.attn.relative_position_index', 'visual_encoder.layers.2.blocks.15.attn_mask', 'visual_encoder.layers.2.blocks.15.attn.relative_position_index', 'visual_encoder.layers.2.blocks.16.attn.relative_position_index', 'visual_encoder.layers.2.blocks.17.attn_mask', 'visual_encoder.layers.2.blocks.17.attn.relative_position_index', 'visual_encoder.layers.3.blocks.0.attn.relative_position_index', 'visual_encoder.layers.3.blocks.1.attn.relative_position_index'], unexpected_keys=[])\n"
|
46 |
+
]
|
47 |
+
}
|
48 |
+
],
|
49 |
+
"source": [
|
50 |
+
"from PIL import Image\n",
|
51 |
+
"import requests\n",
|
52 |
+
"import torch\n",
|
53 |
+
"from torchvision import transforms\n",
|
54 |
+
"from torchvision.transforms.functional import InterpolationMode\n",
|
55 |
+
"import ruamel_yaml as yaml\n",
|
56 |
+
"from models.tag2text import tag2text_caption\n",
|
57 |
+
"\n",
|
58 |
+
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
|
59 |
+
"\n",
|
60 |
+
"\n",
|
61 |
+
"\n",
|
62 |
+
"import gradio as gr\n",
|
63 |
+
"\n",
|
64 |
+
"image_size = 384\n",
|
65 |
+
"\n",
|
66 |
+
"\n",
|
67 |
+
"normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],\n",
|
68 |
+
" std=[0.229, 0.224, 0.225])\n",
|
69 |
+
"transform = transforms.Compose([transforms.Resize((image_size, image_size)),transforms.ToTensor(),normalize])\n",
|
70 |
+
"\n",
|
71 |
+
"\n",
|
72 |
+
"\n",
|
73 |
+
"#######Swin Version\n",
|
74 |
+
"pretrained = '/home/notebook/code/personal/S9049611/BLIP/output/blip_tagtotext_14m/blip_tagtotext_encoderdiv_tar_random_swin/caption_coco_finetune_tagparse_tagfinetune_threshold075_bceloss_tagsingle_5e6_epoch19_negative_1_05_pos_1_10/checkpoint_05.pth'\n",
|
75 |
+
"\n",
|
76 |
+
"config_file = 'configs/tag2text_caption.yaml'\n",
|
77 |
+
"config = yaml.load(open(config_file, 'r'), Loader=yaml.Loader)\n",
|
78 |
+
"\n",
|
79 |
+
"\n",
|
80 |
+
"model = tag2text_caption(pretrained=pretrained, image_size=image_size, vit=config['vit'], \n",
|
81 |
+
" vit_grad_ckpt=config['vit_grad_ckpt'], vit_ckpt_layer=config['vit_ckpt_layer'],\n",
|
82 |
+
" prompt=config['prompt'],config=config,threshold = 0.75 )\n",
|
83 |
+
"\n",
|
84 |
+
"model.eval()\n",
|
85 |
+
"model = model.to(device)\n",
|
86 |
+
"\n",
|
87 |
+
"\n"
|
88 |
+
]
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"cell_type": "code",
|
92 |
+
"execution_count": 4,
|
93 |
+
"id": "9772dc6f-680d-45a7-b39c-23770eb5258e",
|
94 |
+
"metadata": {},
|
95 |
+
"outputs": [
|
96 |
+
{
|
97 |
+
"name": "stdout",
|
98 |
+
"output_type": "stream",
|
99 |
+
"text": [
|
100 |
+
"Running on local URL: http://127.0.0.1:7860\n",
|
101 |
+
"Running on public URL: https://202e6e6a-b3d9-4c97.gradio.live\n",
|
102 |
+
"\n",
|
103 |
+
"This share link expires in 72 hours. For free permanent hosting and GPU upgrades (NEW!), check out Spaces: https://huggingface.co/spaces\n"
|
104 |
+
]
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"data": {
|
108 |
+
"text/html": [
|
109 |
+
"<div><iframe src=\"https://202e6e6a-b3d9-4c97.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
110 |
+
],
|
111 |
+
"text/plain": [
|
112 |
+
"<IPython.core.display.HTML object>"
|
113 |
+
]
|
114 |
+
},
|
115 |
+
"metadata": {},
|
116 |
+
"output_type": "display_data"
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"data": {
|
120 |
+
"text/plain": []
|
121 |
+
},
|
122 |
+
"execution_count": 4,
|
123 |
+
"metadata": {},
|
124 |
+
"output_type": "execute_result"
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"name": "stdout",
|
128 |
+
"output_type": "stream",
|
129 |
+
"text": [
|
130 |
+
"<class 'PIL.Image.Image'>\n",
|
131 |
+
"<class 'PIL.Image.Image'>\n"
|
132 |
+
]
|
133 |
+
}
|
134 |
+
],
|
135 |
+
"source": [
|
136 |
+
"\n",
|
137 |
+
"def inference(raw_image, model_n, input_tag, strategy):\n",
|
138 |
+
" if model_n == 'Image Captioning':\n",
|
139 |
+
" raw_image = raw_image.resize((image_size, image_size))\n",
|
140 |
+
" print(type(raw_image))\n",
|
141 |
+
" image = transform(raw_image).unsqueeze(0).to(device) \n",
|
142 |
+
" model.threshold = 0.75\n",
|
143 |
+
" if input_tag == '' or input_tag == 'none' or input_tag == 'None':\n",
|
144 |
+
" input_tag_list = None\n",
|
145 |
+
" else:\n",
|
146 |
+
" input_tag_list = []\n",
|
147 |
+
" input_tag_list.append(input_tag.replace(',',' | '))\n",
|
148 |
+
" # print(input_tag_list)\n",
|
149 |
+
" with torch.no_grad():\n",
|
150 |
+
" if strategy == \"Beam search\":\n",
|
151 |
+
" \n",
|
152 |
+
"\n",
|
153 |
+
" caption, tag_predict = model.generate(image,tag_input = input_tag_list, return_tag_predict = True)\n",
|
154 |
+
" if input_tag_list == None:\n",
|
155 |
+
" tag_1 = tag_predict\n",
|
156 |
+
" tag_2 = ['none']\n",
|
157 |
+
" else:\n",
|
158 |
+
" _, tag_1 = model.generate(image,tag_input = None, return_tag_predict = True)\n",
|
159 |
+
" tag_2 = tag_predict\n",
|
160 |
+
"\n",
|
161 |
+
" else:\n",
|
162 |
+
"\n",
|
163 |
+
" caption,tag_predict = model.generate(image, tag_input = input_tag_list,sample=True, top_p=0.9, max_length=20, min_length=5, return_tag_predict = True)\n",
|
164 |
+
" if input_tag_list == None:\n",
|
165 |
+
" tag_1 = tag_predict\n",
|
166 |
+
" tag_2 = ['none']\n",
|
167 |
+
" else:\n",
|
168 |
+
" _, tag_1 = model.generate(image,tag_input = None, return_tag_predict = True)\n",
|
169 |
+
" tag_2 = tag_predict\n",
|
170 |
+
" # return 'Caption: '+caption[0], 'Identified Tags:' + tag_predict[0]\n",
|
171 |
+
" # return tag_predict[0],caption[0]\n",
|
172 |
+
" return tag_1[0],tag_2[0],caption[0]\n",
|
173 |
+
" \n",
|
174 |
+
" # return 'caption: '+caption[0], tag_predict[0]\n",
|
175 |
+
"\n",
|
176 |
+
" else: \n",
|
177 |
+
" image_vq = transform_vq(raw_image).unsqueeze(0).to(device) \n",
|
178 |
+
" with torch.no_grad():\n",
|
179 |
+
" answer = model_vq(image_vq, question, train=False, inference='generate') \n",
|
180 |
+
" return 'answer: '+answer[0]\n",
|
181 |
+
" \n",
|
182 |
+
"inputs = [gr.inputs.Image(type='pil'),gr.inputs.Radio(choices=['Image Captioning'], type=\"value\", default=\"Image Captioning\", label=\"Task\"),gr.inputs.Textbox(lines=2, label=\"User Identified Tags (Optional, Enter with commas)\"),gr.inputs.Radio(choices=['Beam search','Nucleus sampling'], type=\"value\", default=\"Beam search\", label=\"Caption Decoding Strategy\")]\n",
|
183 |
+
"\n",
|
184 |
+
"# outputs = gr.outputs.Textbox(label=\"Output\")\n",
|
185 |
+
"# outputs = [gr.outputs.Textbox(label=\"Image Caption\"),gr.outputs.Textbox(label=\"Identified Tags\")]\n",
|
186 |
+
"outputs = [gr.outputs.Textbox(label=\"Model Identified Tags\"),gr.outputs.Textbox(label=\"User Identified Tags\"), gr.outputs.Textbox(label=\"Image Caption\") ]\n",
|
187 |
+
"\n",
|
188 |
+
"title = \"Tag2Text\"\n",
|
189 |
+
"\n",
|
190 |
+
"description = \"Gradio demo for Tag2Text: Guiding Language-Image Model via Image Tagging (Fudan University, OPPO Research Institute, International Digital Economy Academy).\"\n",
|
191 |
+
"\n",
|
192 |
+
"article = \"<p style='text-align: center'><a href='' target='_blank'>Tag2Text: Guiding Language-Image Model via Image Tagging</a> | <a href='' target='_blank'>Github Repo</a></p>\"\n",
|
193 |
+
"\n",
|
194 |
+
"demo = gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=[['images/COCO_val2014_000000551338.jpg',\"Image Captioning\",\"none\",\"Beam search\"], \n",
|
195 |
+
" ['images/COCO_val2014_000000551338.jpg',\"Image Captioning\",\"fence, sky\",\"Beam search\"],\n",
|
196 |
+
" # ['images/COCO_val2014_000000551338.jpg',\"Image Captioning\",\"grass\",\"Beam search\"],\n",
|
197 |
+
" ['images/COCO_val2014_000000483108.jpg',\"Image Captioning\",\"none\",\"Beam search\"],\n",
|
198 |
+
" ['images/COCO_val2014_000000483108.jpg',\"Image Captioning\",\"electric cable\",\"Beam search\"],\n",
|
199 |
+
" # ['images/COCO_val2014_000000483108.jpg',\"Image Captioning\",\"sky, train\",\"Beam search\"],\n",
|
200 |
+
" ['images/COCO_val2014_000000483108.jpg',\"Image Captioning\",\"track, train\",\"Beam search\"] , \n",
|
201 |
+
" ['images/COCO_val2014_000000483108.jpg',\"Image Captioning\",\"grass\",\"Beam search\"] \n",
|
202 |
+
" ])\n",
|
203 |
+
"\n",
|
204 |
+
"\n",
|
205 |
+
"demo.launch(share=True)"
|
206 |
+
]
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"cell_type": "code",
|
210 |
+
"execution_count": null,
|
211 |
+
"id": "0da1f11b-e737-47a9-9b07-4e00c0835f63",
|
212 |
+
"metadata": {},
|
213 |
+
"outputs": [],
|
214 |
+
"source": []
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"cell_type": "code",
|
218 |
+
"execution_count": null,
|
219 |
+
"id": "73a4bb88-4200-4853-b1ba-34f0d4b6dc34",
|
220 |
+
"metadata": {},
|
221 |
+
"outputs": [],
|
222 |
+
"source": []
|
223 |
+
},
|
224 |
+
{
|
225 |
+
"cell_type": "code",
|
226 |
+
"execution_count": null,
|
227 |
+
"id": "3340a61f-c6bc-4ead-87ea-b26aa97b7a68",
|
228 |
+
"metadata": {},
|
229 |
+
"outputs": [],
|
230 |
+
"source": []
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"cell_type": "code",
|
234 |
+
"execution_count": null,
|
235 |
+
"id": "d49e3de4-c3f7-4835-90eb-d0d013fc0ffb",
|
236 |
+
"metadata": {},
|
237 |
+
"outputs": [],
|
238 |
+
"source": []
|
239 |
+
},
|
240 |
+
{
|
241 |
+
"cell_type": "code",
|
242 |
+
"execution_count": null,
|
243 |
+
"id": "205e0317-1701-4afd-8d67-bedb6959f350",
|
244 |
+
"metadata": {},
|
245 |
+
"outputs": [],
|
246 |
+
"source": []
|
247 |
+
},
|
248 |
+
{
|
249 |
+
"cell_type": "code",
|
250 |
+
"execution_count": null,
|
251 |
+
"id": "bf5301a5-80c5-4e44-835e-0160a97fef66",
|
252 |
+
"metadata": {},
|
253 |
+
"outputs": [],
|
254 |
+
"source": []
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"cell_type": "code",
|
258 |
+
"execution_count": null,
|
259 |
+
"id": "f63d7a06-7625-4e1c-855d-177971217a0d",
|
260 |
+
"metadata": {},
|
261 |
+
"outputs": [],
|
262 |
+
"source": []
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"cell_type": "code",
|
266 |
+
"execution_count": null,
|
267 |
+
"id": "c929e566-1a6e-4280-96eb-c434ef9a35d0",
|
268 |
+
"metadata": {},
|
269 |
+
"outputs": [],
|
270 |
+
"source": []
|
271 |
+
}
|
272 |
+
],
|
273 |
+
"metadata": {
|
274 |
+
"kernelspec": {
|
275 |
+
"display_name": "Python 3 (ipykernel)",
|
276 |
+
"language": "python",
|
277 |
+
"name": "python3"
|
278 |
+
},
|
279 |
+
"language_info": {
|
280 |
+
"codemirror_mode": {
|
281 |
+
"name": "ipython",
|
282 |
+
"version": 3
|
283 |
+
},
|
284 |
+
"file_extension": ".py",
|
285 |
+
"mimetype": "text/x-python",
|
286 |
+
"name": "python",
|
287 |
+
"nbconvert_exporter": "python",
|
288 |
+
"pygments_lexer": "ipython3",
|
289 |
+
"version": "3.7.12"
|
290 |
+
}
|
291 |
+
},
|
292 |
+
"nbformat": 4,
|
293 |
+
"nbformat_minor": 5
|
294 |
+
}
|
.ipynb_checkpoints/upload-checkpoint.ipynb
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [],
|
3 |
+
"metadata": {},
|
4 |
+
"nbformat": 4,
|
5 |
+
"nbformat_minor": 5
|
6 |
+
}
|
README.md
CHANGED
@@ -1,13 +1,7 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
license: mit
|
11 |
-
---
|
12 |
-
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
+
|
2 |
+
|
3 |
+
Welcome to Tag2Text demo! (Fudan University, OPPO Research Institute, International Digital Economy Academy).
|
4 |
+
|
5 |
+
Upload your image to get the tags and caption of the image. Optional: You can also input specified tags to get the corresponding caption.
|
6 |
+
|
7 |
+
We are constantly updating this demo.
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
@@ -14,7 +14,6 @@ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
14 |
|
15 |
image_size = 384
|
16 |
|
17 |
-
|
18 |
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
19 |
std=[0.229, 0.224, 0.225])
|
20 |
transform = transforms.Compose([transforms.Resize((image_size, image_size)),transforms.ToTensor(),normalize])
|
@@ -26,7 +25,6 @@ pretrained = '/home/notebook/code/personal/S9049611/BLIP/output/blip_tagtotext_1
|
|
26 |
config_file = 'configs/tag2text_caption.yaml'
|
27 |
config = yaml.load(open(config_file, 'r'), Loader=yaml.Loader)
|
28 |
|
29 |
-
|
30 |
model = tag2text_caption(pretrained=pretrained, image_size=image_size, vit=config['vit'],
|
31 |
vit_grad_ckpt=config['vit_grad_ckpt'], vit_ckpt_layer=config['vit_ckpt_layer'],
|
32 |
prompt=config['prompt'],config=config,threshold = 0.75 )
|
@@ -35,66 +33,41 @@ model.eval()
|
|
35 |
model = model.to(device)
|
36 |
|
37 |
|
38 |
-
def inference(raw_image,
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
else:
|
46 |
-
|
47 |
-
|
48 |
-
with torch.no_grad():
|
49 |
-
if strategy == "Beam search":
|
50 |
-
|
51 |
-
|
52 |
-
caption, tag_predict = model.generate(image,tag_input = input_tag_list, return_tag_predict = True)
|
53 |
-
if input_tag_list == None:
|
54 |
-
tag_1 = tag_predict
|
55 |
-
tag_2 = ['none']
|
56 |
-
else:
|
57 |
-
_, tag_1 = model.generate(image,tag_input = None, return_tag_predict = True)
|
58 |
-
tag_2 = tag_predict
|
59 |
-
|
60 |
-
else:
|
61 |
-
|
62 |
-
caption,tag_predict = model.generate(image, tag_input = input_tag_list,sample=True, top_p=0.9, max_length=20, min_length=5, return_tag_predict = True)
|
63 |
-
if input_tag_list == None:
|
64 |
-
tag_1 = tag_predict
|
65 |
-
tag_2 = ['none']
|
66 |
-
else:
|
67 |
-
_, tag_1 = model.generate(image,tag_input = None, return_tag_predict = True)
|
68 |
-
tag_2 = tag_predict
|
69 |
-
return tag_1[0],tag_2[0],caption[0]
|
70 |
-
|
71 |
-
|
72 |
-
else:
|
73 |
-
image_vq = transform_vq(raw_image).unsqueeze(0).to(device)
|
74 |
-
with torch.no_grad():
|
75 |
-
answer = model_vq(image_vq, question, train=False, inference='generate')
|
76 |
-
return 'answer: '+answer[0]
|
77 |
-
|
78 |
-
inputs = [gr.inputs.Image(type='pil'),gr.inputs.Radio(choices=['Image Captioning'], type="value", default="Image Captioning", label="Task"),gr.inputs.Textbox(lines=2, label="User Identified Tags (Optional, Enter with commas)"),gr.inputs.Radio(choices=['Beam search','Nucleus sampling'], type="value", default="Beam search", label="Caption Decoding Strategy")]
|
79 |
-
|
80 |
-
outputs = [gr.outputs.Textbox(label="Model Identified Tags"),gr.outputs.Textbox(label="User Identified Tags"), gr.outputs.Textbox(label="Image Caption") ]
|
81 |
|
82 |
-
|
83 |
|
84 |
-
description = "Gradio demo for Tag2Text: Guiding Language-Image Model via Image Tagging (Fudan University, OPPO Research Institute, International Digital Economy Academy)."
|
85 |
|
86 |
-
|
87 |
|
88 |
-
|
89 |
-
['images/COCO_val2014_000000551338.jpg',"Image Captioning","fence, sky","Beam search"],
|
90 |
-
# ['images/COCO_val2014_000000551338.jpg',"Image Captioning","grass","Beam search"],
|
91 |
-
['images/COCO_val2014_000000483108.jpg',"Image Captioning","none","Beam search"],
|
92 |
-
['images/COCO_val2014_000000483108.jpg',"Image Captioning","electric cable","Beam search"],
|
93 |
-
# ['images/COCO_val2014_000000483108.jpg',"Image Captioning","sky, train","Beam search"],
|
94 |
-
['images/COCO_val2014_000000483108.jpg',"Image Captioning","track, train","Beam search"] ,
|
95 |
-
['images/COCO_val2014_000000483108.jpg',"Image Captioning","grass","Beam search"]
|
96 |
-
])
|
97 |
|
|
|
|
|
98 |
|
|
|
99 |
|
|
|
|
|
|
|
|
|
100 |
|
|
|
14 |
|
15 |
image_size = 384
|
16 |
|
|
|
17 |
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
18 |
std=[0.229, 0.224, 0.225])
|
19 |
transform = transforms.Compose([transforms.Resize((image_size, image_size)),transforms.ToTensor(),normalize])
|
|
|
25 |
config_file = 'configs/tag2text_caption.yaml'
|
26 |
config = yaml.load(open(config_file, 'r'), Loader=yaml.Loader)
|
27 |
|
|
|
28 |
model = tag2text_caption(pretrained=pretrained, image_size=image_size, vit=config['vit'],
|
29 |
vit_grad_ckpt=config['vit_grad_ckpt'], vit_ckpt_layer=config['vit_ckpt_layer'],
|
30 |
prompt=config['prompt'],config=config,threshold = 0.75 )
|
|
|
33 |
model = model.to(device)
|
34 |
|
35 |
|
36 |
+
def inference(raw_image, input_tag):
|
37 |
+
raw_image = raw_image.resize((image_size, image_size))
|
38 |
+
|
39 |
+
image = transform(raw_image).unsqueeze(0).to(device)
|
40 |
+
model.threshold = 0.69
|
41 |
+
if input_tag == '' or input_tag == 'none' or input_tag == 'None':
|
42 |
+
input_tag_list = None
|
43 |
+
else:
|
44 |
+
input_tag_list = []
|
45 |
+
input_tag_list.append(input_tag.replace(',',' | '))
|
46 |
+
with torch.no_grad():
|
47 |
+
|
48 |
+
|
49 |
+
caption, tag_predict = model.generate(image,tag_input = input_tag_list, return_tag_predict = True)
|
50 |
+
if input_tag_list == None:
|
51 |
+
tag_1 = tag_predict
|
52 |
+
tag_2 = ['none']
|
53 |
else:
|
54 |
+
_, tag_1 = model.generate(image,tag_input = None, return_tag_predict = True)
|
55 |
+
tag_2 = tag_predict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
+
return tag_1[0],tag_2[0],caption[0]
|
58 |
|
|
|
59 |
|
60 |
+
inputs = [gr.inputs.Image(type='pil'),gr.inputs.Textbox(lines=2, label="User Specified Tags (Optional, Enter with commas)")]
|
61 |
|
62 |
+
outputs = [gr.outputs.Textbox(label="Model Identified Tags"),gr.outputs.Textbox(label="User Specified Tags"), gr.outputs.Textbox(label="Image Caption") ]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
+
title = "Tag2Text"
|
65 |
+
description = "Welcome to Tag2Text demo! (Supported by Fudan University, OPPO Research Institute, International Digital Economy Academy) <br/> Upload your image to get the tags and caption of the image. Optional: You can also input specified tags to get the corresponding caption."
|
66 |
|
67 |
+
article = "<p style='text-align: center'><a href='' target='_blank'>Tag2Text: Guiding Language-Image Model via Image Tagging</a> | <a href='' target='_blank'>Github Repo</a></p>"
|
68 |
|
69 |
+
demo = gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=[['images/COCO_val2014_000000483108.jpg',"none"],
|
70 |
+
['images/COCO_val2014_000000483108.jpg',"electric cable"],
|
71 |
+
['images/COCO_val2014_000000483108.jpg',"track, train"] ,
|
72 |
+
])
|
73 |
|
configs/med_config.json
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertModel"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"hidden_act": "gelu",
|
7 |
+
"hidden_dropout_prob": 0.1,
|
8 |
+
"hidden_size": 768,
|
9 |
+
"initializer_range": 0.02,
|
10 |
+
"intermediate_size": 3072,
|
11 |
+
"layer_norm_eps": 1e-12,
|
12 |
+
"max_position_embeddings": 512,
|
13 |
+
"model_type": "bert",
|
14 |
+
"num_attention_heads": 12,
|
15 |
+
"num_hidden_layers": 12,
|
16 |
+
"pad_token_id": 0,
|
17 |
+
"type_vocab_size": 2,
|
18 |
+
"vocab_size": 30524,
|
19 |
+
"encoder_width": 768,
|
20 |
+
"add_cross_attention": true
|
21 |
+
}
|
configs/q2l_config.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertModel"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"hidden_act": "gelu",
|
7 |
+
"hidden_dropout_prob": 0.1,
|
8 |
+
"hidden_size": 768,
|
9 |
+
"initializer_range": 0.02,
|
10 |
+
"intermediate_size": 3072,
|
11 |
+
"layer_norm_eps": 1e-12,
|
12 |
+
"max_position_embeddings": 512,
|
13 |
+
"model_type": "bert",
|
14 |
+
"num_attention_heads": 4,
|
15 |
+
"num_hidden_layers": 2,
|
16 |
+
"pad_token_id": 0,
|
17 |
+
"type_vocab_size": 2,
|
18 |
+
"vocab_size": 30522,
|
19 |
+
"encoder_width": 768,
|
20 |
+
"add_cross_attention": true,
|
21 |
+
"add_tag_cross_attention": false
|
22 |
+
}
|
23 |
+
|
configs/swin/config_swinB_224.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"ckpt": "pretrain_model/swin_base_patch4_window7_224_22k.pth",
|
3 |
+
"vision_width": 1024,
|
4 |
+
"image_res": 224,
|
5 |
+
"window_size": 7,
|
6 |
+
"embed_dim": 128,
|
7 |
+
"depths": [ 2, 2, 18, 2 ],
|
8 |
+
"num_heads": [ 4, 8, 16, 32 ]
|
9 |
+
}
|
10 |
+
|
configs/swin/config_swinB_384.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"ckpt": "pretrain_model/swin_base_patch4_window7_224_22k.pth",
|
3 |
+
"vision_width": 1024,
|
4 |
+
"image_res": 384,
|
5 |
+
"window_size": 12,
|
6 |
+
"embed_dim": 128,
|
7 |
+
"depths": [ 2, 2, 18, 2 ],
|
8 |
+
"num_heads": [ 4, 8, 16, 32 ]
|
9 |
+
}
|
10 |
+
|
configs/swin/config_swinB_480.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"ckpt": "pretrain_model/swin_base_patch4_window7_224_22k.pth",
|
3 |
+
"vision_width": 1024,
|
4 |
+
"image_res": 480,
|
5 |
+
"window_size": 15,
|
6 |
+
"embed_dim": 128,
|
7 |
+
"depths": [ 2, 2, 18, 2 ],
|
8 |
+
"num_heads": [ 4, 8, 16, 32 ]
|
9 |
+
}
|
configs/swin/config_swinB_576.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"ckpt": "pretrain_model/swin_base_patch4_window7_224_22k.pth",
|
3 |
+
"vision_width": 1024,
|
4 |
+
"image_res": 576,
|
5 |
+
"window_size": 18,
|
6 |
+
"embed_dim": 128,
|
7 |
+
"depths": [ 2, 2, 18, 2 ],
|
8 |
+
"num_heads": [ 4, 8, 16, 32 ]
|
9 |
+
}
|
configs/swin/config_swinB_608.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"ckpt": "pretrain_model/swin_base_patch4_window7_224_22k.pth",
|
3 |
+
"vision_width": 1024,
|
4 |
+
"image_res": 608,
|
5 |
+
"window_size": 19,
|
6 |
+
"embed_dim": 128,
|
7 |
+
"depths": [ 2, 2, 18, 2 ],
|
8 |
+
"num_heads": [ 4, 8, 16, 32 ]
|
9 |
+
}
|
configs/tag2text_caption.yaml
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
image_root: '/home/notebook/data/group/projects/tagging/caption/datasets/public/coco/'
|
2 |
+
|
3 |
+
ann_root: 'dataset/caption_dataset'
|
4 |
+
coco_gt_root: 'dataset/caption_dataset'
|
5 |
+
|
6 |
+
pretrained: '/home/notebook/code/personal/S9049611/BLIP/output/pretrain_caption_tagtotext_v2_bert_asl'
|
7 |
+
|
8 |
+
# size of vit model; base or large
|
9 |
+
vit: 'swin_b'
|
10 |
+
vit_grad_ckpt: False
|
11 |
+
vit_ckpt_layer: 0
|
12 |
+
|
13 |
+
batch_size: 35
|
14 |
+
init_lr: 5e-6
|
15 |
+
|
16 |
+
image_size: 384
|
17 |
+
|
18 |
+
# generation configs
|
19 |
+
max_length: 20
|
20 |
+
min_length: 5
|
21 |
+
num_beams: 3
|
22 |
+
prompt: 'a picture of '
|
23 |
+
|
24 |
+
# optimizer
|
25 |
+
weight_decay: 0.05
|
26 |
+
min_lr: 0
|
27 |
+
max_epoch: 10
|
28 |
+
|
29 |
+
text_pretrain: 'bert'
|
30 |
+
|
31 |
+
class_num: 3429
|
32 |
+
threshold: 0.7
|
33 |
+
|
data/__pycache__/tag_class.cpython-37.pyc
ADDED
Binary file (52 kB). View file
|
|
data/tag_class.py
ADDED
@@ -0,0 +1,3437 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
|
4 |
+
tra_array = ['tennis',
|
5 |
+
'bear cub',
|
6 |
+
'observatory',
|
7 |
+
'bicycle',
|
8 |
+
'hillside',
|
9 |
+
'judge',
|
10 |
+
'watercolor illustration',
|
11 |
+
'granite',
|
12 |
+
'lobster',
|
13 |
+
'livery',
|
14 |
+
'stone',
|
15 |
+
'ceramic',
|
16 |
+
'ranch',
|
17 |
+
'cloth',
|
18 |
+
'smile',
|
19 |
+
'building',
|
20 |
+
'tattoo',
|
21 |
+
'cricketer',
|
22 |
+
'cheek',
|
23 |
+
'pear',
|
24 |
+
'source',
|
25 |
+
'winter',
|
26 |
+
'surface',
|
27 |
+
'spray',
|
28 |
+
'ceremony',
|
29 |
+
'magic',
|
30 |
+
'curve',
|
31 |
+
'container',
|
32 |
+
'fair',
|
33 |
+
'medicine',
|
34 |
+
'baby',
|
35 |
+
'tennis racquet',
|
36 |
+
'ornament',
|
37 |
+
'bamboo',
|
38 |
+
'duckling',
|
39 |
+
'song',
|
40 |
+
'safari',
|
41 |
+
'team presentation',
|
42 |
+
'daffodil',
|
43 |
+
'cross',
|
44 |
+
'toothpaste',
|
45 |
+
'shield',
|
46 |
+
'fashion model',
|
47 |
+
'capsule',
|
48 |
+
'map',
|
49 |
+
'creek',
|
50 |
+
'glass house',
|
51 |
+
'glass plate',
|
52 |
+
'siding',
|
53 |
+
'corner',
|
54 |
+
'water buffalo',
|
55 |
+
'bison',
|
56 |
+
'figure skater',
|
57 |
+
'diploma',
|
58 |
+
'tire',
|
59 |
+
'race',
|
60 |
+
'cable car',
|
61 |
+
'brain',
|
62 |
+
'gas stove',
|
63 |
+
'soap bubble',
|
64 |
+
'palette',
|
65 |
+
'snowboard',
|
66 |
+
'school child',
|
67 |
+
'trench coat',
|
68 |
+
'monk',
|
69 |
+
'fiber',
|
70 |
+
'kitchen window',
|
71 |
+
'sunglass',
|
72 |
+
'coffee',
|
73 |
+
'security',
|
74 |
+
'strawberry',
|
75 |
+
'penguin',
|
76 |
+
'tree root',
|
77 |
+
'loaf',
|
78 |
+
'engagement ring',
|
79 |
+
'lamb',
|
80 |
+
'vector cartoon illustration',
|
81 |
+
'sandwich',
|
82 |
+
'mountain village',
|
83 |
+
'shape',
|
84 |
+
'charm',
|
85 |
+
'fiction',
|
86 |
+
'knot',
|
87 |
+
'greenhouse',
|
88 |
+
'sushi',
|
89 |
+
'text',
|
90 |
+
'disaster',
|
91 |
+
'trophy',
|
92 |
+
'gang',
|
93 |
+
'strap',
|
94 |
+
'soccer game',
|
95 |
+
'cardinal',
|
96 |
+
'tee',
|
97 |
+
'turtle',
|
98 |
+
'water surface',
|
99 |
+
'grassland',
|
100 |
+
'dolphin',
|
101 |
+
'store',
|
102 |
+
'dirt',
|
103 |
+
'iceberg',
|
104 |
+
'pergola',
|
105 |
+
'farmer market',
|
106 |
+
'publicity portrait',
|
107 |
+
'tote bag',
|
108 |
+
'teenage girl',
|
109 |
+
'view mirror',
|
110 |
+
'session',
|
111 |
+
'commuter',
|
112 |
+
'dressing room',
|
113 |
+
'tricycle',
|
114 |
+
'christmas ball',
|
115 |
+
'headlight',
|
116 |
+
'police',
|
117 |
+
'armchair',
|
118 |
+
'chart',
|
119 |
+
'yacht',
|
120 |
+
'saw',
|
121 |
+
'printer',
|
122 |
+
'rock band',
|
123 |
+
'gingerbread house',
|
124 |
+
'tag',
|
125 |
+
'table lamp',
|
126 |
+
'hockey game',
|
127 |
+
'slope',
|
128 |
+
'font',
|
129 |
+
'wicker basket',
|
130 |
+
'jewelry',
|
131 |
+
'quarter',
|
132 |
+
'software',
|
133 |
+
'weapon',
|
134 |
+
'pin',
|
135 |
+
'worship',
|
136 |
+
'painter',
|
137 |
+
'goal',
|
138 |
+
'morning light',
|
139 |
+
'bike',
|
140 |
+
'baseball bat',
|
141 |
+
'elevator',
|
142 |
+
'cuisine',
|
143 |
+
'sausage',
|
144 |
+
'stunt',
|
145 |
+
'wrestler',
|
146 |
+
'statue',
|
147 |
+
'landing',
|
148 |
+
'pillar',
|
149 |
+
'willow tree',
|
150 |
+
'sea wave',
|
151 |
+
'chicken',
|
152 |
+
'peanut',
|
153 |
+
'muscle',
|
154 |
+
'bob',
|
155 |
+
'tv genre',
|
156 |
+
'bathroom window',
|
157 |
+
'radish',
|
158 |
+
'textile',
|
159 |
+
'pelican',
|
160 |
+
'marketplace',
|
161 |
+
'crest',
|
162 |
+
'elevation map',
|
163 |
+
'gift',
|
164 |
+
'parish',
|
165 |
+
'traffic light',
|
166 |
+
'campfire',
|
167 |
+
'fog',
|
168 |
+
'award winner',
|
169 |
+
'beach ball',
|
170 |
+
'mat',
|
171 |
+
'white house',
|
172 |
+
'plaster',
|
173 |
+
'moped',
|
174 |
+
'football team',
|
175 |
+
'solution',
|
176 |
+
'bicyclist',
|
177 |
+
'bit',
|
178 |
+
'playground',
|
179 |
+
'darkness',
|
180 |
+
'cake',
|
181 |
+
'maple leave',
|
182 |
+
'mold',
|
183 |
+
'cracker',
|
184 |
+
'blueberry',
|
185 |
+
'rubble',
|
186 |
+
'container ship',
|
187 |
+
'pedestrian bridge',
|
188 |
+
'snail',
|
189 |
+
'parrot',
|
190 |
+
'form',
|
191 |
+
'circuit',
|
192 |
+
'highlight',
|
193 |
+
'pickup truck',
|
194 |
+
'koala',
|
195 |
+
'rain',
|
196 |
+
'system',
|
197 |
+
'weather',
|
198 |
+
'raincoat',
|
199 |
+
'soccer team',
|
200 |
+
'windshield',
|
201 |
+
'thunderstorm',
|
202 |
+
'mike',
|
203 |
+
'bird house',
|
204 |
+
'bridge',
|
205 |
+
'grandfather',
|
206 |
+
'restroom',
|
207 |
+
'animation',
|
208 |
+
'wilderness',
|
209 |
+
'clown',
|
210 |
+
'banana',
|
211 |
+
'brown',
|
212 |
+
'braid',
|
213 |
+
'dining room',
|
214 |
+
'kindergarten',
|
215 |
+
'launch event',
|
216 |
+
'purple',
|
217 |
+
'school',
|
218 |
+
'stairwell',
|
219 |
+
'brooch',
|
220 |
+
'movie poster image',
|
221 |
+
'mountain river',
|
222 |
+
'shelf',
|
223 |
+
'wicket',
|
224 |
+
'headboard',
|
225 |
+
'buddha',
|
226 |
+
'flower field',
|
227 |
+
'dugout',
|
228 |
+
'cd',
|
229 |
+
'bald eagle',
|
230 |
+
'lagoon',
|
231 |
+
'seaweed',
|
232 |
+
'agriculture',
|
233 |
+
'emergency service',
|
234 |
+
'maple tree',
|
235 |
+
'parachute',
|
236 |
+
'continent',
|
237 |
+
'amusement park',
|
238 |
+
'remote',
|
239 |
+
'bun',
|
240 |
+
'tackle',
|
241 |
+
'hospital',
|
242 |
+
'garage door',
|
243 |
+
'birthday party',
|
244 |
+
'friendship',
|
245 |
+
'go',
|
246 |
+
'mausoleum',
|
247 |
+
'jeep',
|
248 |
+
'raccoon',
|
249 |
+
'step',
|
250 |
+
'ice hockey team',
|
251 |
+
'cigarette',
|
252 |
+
'lace dress',
|
253 |
+
'forest floor',
|
254 |
+
'mall',
|
255 |
+
'captain',
|
256 |
+
'milk',
|
257 |
+
'golf course',
|
258 |
+
'meal',
|
259 |
+
'picnic table',
|
260 |
+
'sail',
|
261 |
+
'volleyball',
|
262 |
+
'canal',
|
263 |
+
'terrace',
|
264 |
+
'computer desk',
|
265 |
+
'caravan',
|
266 |
+
'hotel',
|
267 |
+
'cheerleader',
|
268 |
+
'nurse',
|
269 |
+
'museum',
|
270 |
+
'marsh',
|
271 |
+
'fox',
|
272 |
+
'plateau',
|
273 |
+
'night',
|
274 |
+
'twin',
|
275 |
+
'letter logo',
|
276 |
+
'autumn tree',
|
277 |
+
'powder',
|
278 |
+
'convention',
|
279 |
+
'creature',
|
280 |
+
'lighthouse',
|
281 |
+
'shop window',
|
282 |
+
'jacket',
|
283 |
+
'stork',
|
284 |
+
'taxi',
|
285 |
+
'trade',
|
286 |
+
'blackboard',
|
287 |
+
'olive',
|
288 |
+
'road sign',
|
289 |
+
'resort',
|
290 |
+
'snowflake',
|
291 |
+
'cemetery',
|
292 |
+
'travel',
|
293 |
+
'evening dress',
|
294 |
+
'picnic',
|
295 |
+
'drink',
|
296 |
+
'winter morning',
|
297 |
+
'football player',
|
298 |
+
'snack',
|
299 |
+
'boxing glove',
|
300 |
+
'dinner party',
|
301 |
+
'airline',
|
302 |
+
'swing',
|
303 |
+
'port',
|
304 |
+
'wheelbarrow',
|
305 |
+
'bathroom sink',
|
306 |
+
'sweater',
|
307 |
+
'ambulance',
|
308 |
+
'gear',
|
309 |
+
'oil',
|
310 |
+
'wii controller',
|
311 |
+
'array',
|
312 |
+
'home office',
|
313 |
+
'car show',
|
314 |
+
'mixture',
|
315 |
+
'profession',
|
316 |
+
'tree frog',
|
317 |
+
'square',
|
318 |
+
'facility',
|
319 |
+
'coral reef',
|
320 |
+
'sea wall',
|
321 |
+
'pizza',
|
322 |
+
'exhibit',
|
323 |
+
'demolition',
|
324 |
+
'trout',
|
325 |
+
'ring',
|
326 |
+
'coffee shop',
|
327 |
+
'bracelet',
|
328 |
+
'bean',
|
329 |
+
'lip',
|
330 |
+
'fencing',
|
331 |
+
'landscape',
|
332 |
+
'sitting',
|
333 |
+
'package',
|
334 |
+
'metal',
|
335 |
+
'bust',
|
336 |
+
'king',
|
337 |
+
'hair',
|
338 |
+
'window seat',
|
339 |
+
'wildlife',
|
340 |
+
'trunk',
|
341 |
+
'greenery',
|
342 |
+
'stencil',
|
343 |
+
'fire hydrant',
|
344 |
+
'bridesmaid',
|
345 |
+
'plaza',
|
346 |
+
'alps',
|
347 |
+
'tower bridge',
|
348 |
+
'crop top',
|
349 |
+
'crossing',
|
350 |
+
'cinema',
|
351 |
+
'pedestrian crossing',
|
352 |
+
'family',
|
353 |
+
'shopping cart',
|
354 |
+
'stomach',
|
355 |
+
'church building',
|
356 |
+
'screen door',
|
357 |
+
'skater',
|
358 |
+
'soccer field',
|
359 |
+
'kettle',
|
360 |
+
'mussel',
|
361 |
+
'raindrop',
|
362 |
+
'candy cane',
|
363 |
+
'water lily',
|
364 |
+
'flower girl',
|
365 |
+
'desert',
|
366 |
+
'enclosure',
|
367 |
+
'christmas light',
|
368 |
+
'kitchen',
|
369 |
+
'caterpillar',
|
370 |
+
'plaid',
|
371 |
+
'bath',
|
372 |
+
'bush',
|
373 |
+
'mud',
|
374 |
+
'ballet',
|
375 |
+
'knee',
|
376 |
+
'adult',
|
377 |
+
'raft',
|
378 |
+
'sea view',
|
379 |
+
'cactus',
|
380 |
+
'office chair',
|
381 |
+
'overall',
|
382 |
+
'rim',
|
383 |
+
'scaffolding',
|
384 |
+
'pig',
|
385 |
+
'cover',
|
386 |
+
'poster page',
|
387 |
+
'sprinkle',
|
388 |
+
'chandelier',
|
389 |
+
'algae',
|
390 |
+
'traffic',
|
391 |
+
'surfboard',
|
392 |
+
'book',
|
393 |
+
'filming',
|
394 |
+
'flash',
|
395 |
+
'mansion',
|
396 |
+
'camouflage',
|
397 |
+
'trouser',
|
398 |
+
'ticket',
|
399 |
+
'weed',
|
400 |
+
'cab',
|
401 |
+
'trench',
|
402 |
+
'elephant',
|
403 |
+
'huddle',
|
404 |
+
'sphere',
|
405 |
+
'christmas decoration',
|
406 |
+
'city',
|
407 |
+
'launch',
|
408 |
+
'doll',
|
409 |
+
'christmas ornament',
|
410 |
+
'fabric',
|
411 |
+
'bikini',
|
412 |
+
'biplane',
|
413 |
+
'breakfast',
|
414 |
+
'neighbourhood',
|
415 |
+
'race track',
|
416 |
+
'foliage',
|
417 |
+
'avocado',
|
418 |
+
'school bus',
|
419 |
+
'footwear',
|
420 |
+
'highway',
|
421 |
+
'ocean view',
|
422 |
+
'art vector illustration',
|
423 |
+
'wall clock',
|
424 |
+
'curtain',
|
425 |
+
'teenager',
|
426 |
+
'kitchen area',
|
427 |
+
'robot',
|
428 |
+
'tusk',
|
429 |
+
'lounge chair',
|
430 |
+
'beam',
|
431 |
+
'paddle',
|
432 |
+
'camel',
|
433 |
+
'lid',
|
434 |
+
'world map',
|
435 |
+
'city view',
|
436 |
+
'newlywed',
|
437 |
+
'cargo ship',
|
438 |
+
'yellow',
|
439 |
+
'exhibition',
|
440 |
+
'bend',
|
441 |
+
'novel',
|
442 |
+
'wool',
|
443 |
+
'ontario',
|
444 |
+
'bread',
|
445 |
+
'campus',
|
446 |
+
'coastline',
|
447 |
+
'cutting board',
|
448 |
+
'booth',
|
449 |
+
'table top',
|
450 |
+
'carpet',
|
451 |
+
'beach chair',
|
452 |
+
'workout',
|
453 |
+
'street food',
|
454 |
+
'fun',
|
455 |
+
'costumer film designer',
|
456 |
+
'gadget',
|
457 |
+
'artist',
|
458 |
+
'fishing village',
|
459 |
+
'builder',
|
460 |
+
'violinist',
|
461 |
+
'iphone',
|
462 |
+
'spider web',
|
463 |
+
'traffic sign',
|
464 |
+
'ruin',
|
465 |
+
'rescue',
|
466 |
+
'clipboard',
|
467 |
+
'seal',
|
468 |
+
'film director',
|
469 |
+
'paw',
|
470 |
+
'nursery',
|
471 |
+
'intersection',
|
472 |
+
'tomato sauce',
|
473 |
+
'taste',
|
474 |
+
'paddy field',
|
475 |
+
'christmas tree',
|
476 |
+
'wave',
|
477 |
+
'stool',
|
478 |
+
'watering can',
|
479 |
+
'rug',
|
480 |
+
'daytime',
|
481 |
+
'subway station',
|
482 |
+
'craft',
|
483 |
+
'pine forest',
|
484 |
+
'black',
|
485 |
+
'planet',
|
486 |
+
'motif',
|
487 |
+
'christmas market',
|
488 |
+
'glass window',
|
489 |
+
'college',
|
490 |
+
'wheat',
|
491 |
+
'damage',
|
492 |
+
'rectangle',
|
493 |
+
'picture frame',
|
494 |
+
'chess',
|
495 |
+
'guest room',
|
496 |
+
'street corner',
|
497 |
+
'religion',
|
498 |
+
'seed',
|
499 |
+
'puzzle',
|
500 |
+
'freeway',
|
501 |
+
'beauty',
|
502 |
+
'ocean',
|
503 |
+
'watch',
|
504 |
+
'mother',
|
505 |
+
'garage',
|
506 |
+
'quote',
|
507 |
+
'dj',
|
508 |
+
'supporter',
|
509 |
+
'hip hop artist',
|
510 |
+
'muffin',
|
511 |
+
'eiffel tower',
|
512 |
+
'cash',
|
513 |
+
'firefighter',
|
514 |
+
'cauliflower',
|
515 |
+
'bunker',
|
516 |
+
'sled',
|
517 |
+
'manicure',
|
518 |
+
'shark',
|
519 |
+
'stall',
|
520 |
+
'jungle',
|
521 |
+
'family home',
|
522 |
+
'tour bus',
|
523 |
+
'chimney',
|
524 |
+
'touchdown',
|
525 |
+
'roundabout',
|
526 |
+
'coyote',
|
527 |
+
'street scene',
|
528 |
+
'tank',
|
529 |
+
'wedding dress',
|
530 |
+
'mantle',
|
531 |
+
'bedroom window',
|
532 |
+
'coconut',
|
533 |
+
'chapel',
|
534 |
+
'goat',
|
535 |
+
'living space',
|
536 |
+
'rock wall',
|
537 |
+
'polka dot',
|
538 |
+
'railway',
|
539 |
+
'mandala',
|
540 |
+
'mango',
|
541 |
+
'lesson',
|
542 |
+
'mountain landscape',
|
543 |
+
'team photo',
|
544 |
+
'bookshelf',
|
545 |
+
'meter',
|
546 |
+
'bulldog',
|
547 |
+
'evening sun',
|
548 |
+
'stick',
|
549 |
+
'card',
|
550 |
+
'pink',
|
551 |
+
'fish pond',
|
552 |
+
'paint',
|
553 |
+
'pill',
|
554 |
+
'cart',
|
555 |
+
'pea',
|
556 |
+
'van',
|
557 |
+
'album',
|
558 |
+
'football college game',
|
559 |
+
'mountain pass',
|
560 |
+
'doughnut',
|
561 |
+
'ski slope',
|
562 |
+
'match',
|
563 |
+
'official',
|
564 |
+
'shadow',
|
565 |
+
'organ',
|
566 |
+
'celebration',
|
567 |
+
'coin',
|
568 |
+
'log cabin',
|
569 |
+
'firework display',
|
570 |
+
'present',
|
571 |
+
'twig',
|
572 |
+
'chef',
|
573 |
+
'confetti',
|
574 |
+
'footpath',
|
575 |
+
'tour',
|
576 |
+
'ponytail',
|
577 |
+
'artwork',
|
578 |
+
'race car',
|
579 |
+
'club',
|
580 |
+
'season',
|
581 |
+
'hose',
|
582 |
+
'pencil',
|
583 |
+
'aircraft',
|
584 |
+
'rock formation',
|
585 |
+
'wardrobe',
|
586 |
+
'participant',
|
587 |
+
'politician',
|
588 |
+
'engineer',
|
589 |
+
'peace',
|
590 |
+
'filter',
|
591 |
+
'sailing boat',
|
592 |
+
'water bottle',
|
593 |
+
'service dog',
|
594 |
+
'poodle',
|
595 |
+
'loki',
|
596 |
+
'statesman',
|
597 |
+
'sleeping bag',
|
598 |
+
'outskirt',
|
599 |
+
'clock',
|
600 |
+
'factory',
|
601 |
+
'oak tree',
|
602 |
+
'physician',
|
603 |
+
'color',
|
604 |
+
'room',
|
605 |
+
'stairway',
|
606 |
+
'company',
|
607 |
+
'lady',
|
608 |
+
'graph',
|
609 |
+
'faucet',
|
610 |
+
'tablecloth',
|
611 |
+
'subway train',
|
612 |
+
'chocolate chip cookie',
|
613 |
+
'headquarters',
|
614 |
+
'screw',
|
615 |
+
'goggle',
|
616 |
+
'halloween',
|
617 |
+
'city street',
|
618 |
+
'swirl',
|
619 |
+
'cord',
|
620 |
+
'forward',
|
621 |
+
'bone',
|
622 |
+
'bedding',
|
623 |
+
'archway',
|
624 |
+
'wig',
|
625 |
+
'lobby',
|
626 |
+
'mask',
|
627 |
+
'attic',
|
628 |
+
'kitchen table',
|
629 |
+
'skylight',
|
630 |
+
'fire',
|
631 |
+
'exit',
|
632 |
+
'oil painting',
|
633 |
+
'passenger',
|
634 |
+
'meditation',
|
635 |
+
'salmon',
|
636 |
+
'fedora',
|
637 |
+
'rubber stamp',
|
638 |
+
'orange juice',
|
639 |
+
'arch',
|
640 |
+
'scientist',
|
641 |
+
'stroll',
|
642 |
+
'manhattan',
|
643 |
+
'float',
|
644 |
+
'baseball uniform',
|
645 |
+
'circle',
|
646 |
+
'church',
|
647 |
+
'decker bus',
|
648 |
+
'competitor',
|
649 |
+
'zoo',
|
650 |
+
'basketball team',
|
651 |
+
'tourist',
|
652 |
+
'daughter',
|
653 |
+
'silverware',
|
654 |
+
'ceiling fan',
|
655 |
+
'birth',
|
656 |
+
'vase',
|
657 |
+
'jack',
|
658 |
+
'mushroom',
|
659 |
+
'spiral',
|
660 |
+
'cage',
|
661 |
+
'limb',
|
662 |
+
'salad',
|
663 |
+
'ad',
|
664 |
+
'control',
|
665 |
+
'earth',
|
666 |
+
'party',
|
667 |
+
'bolt',
|
668 |
+
'tractor',
|
669 |
+
'barley',
|
670 |
+
'wedding photo',
|
671 |
+
'hawk',
|
672 |
+
'warehouse',
|
673 |
+
'vegetable garden',
|
674 |
+
'chocolate cake',
|
675 |
+
'cabbage',
|
676 |
+
'floor window',
|
677 |
+
'baby shower',
|
678 |
+
'magnifying glass',
|
679 |
+
'table',
|
680 |
+
'stethoscope',
|
681 |
+
'reading',
|
682 |
+
'mission',
|
683 |
+
'croissant',
|
684 |
+
'gift box',
|
685 |
+
'rocket',
|
686 |
+
'forest road',
|
687 |
+
'cooking',
|
688 |
+
'suite',
|
689 |
+
'hill country',
|
690 |
+
'motorcycle',
|
691 |
+
'baseball player',
|
692 |
+
'angle',
|
693 |
+
'drug',
|
694 |
+
'sport association',
|
695 |
+
'championship',
|
696 |
+
'family portrait',
|
697 |
+
'florist',
|
698 |
+
'softball',
|
699 |
+
'egret',
|
700 |
+
'office',
|
701 |
+
'plywood',
|
702 |
+
'jockey',
|
703 |
+
'mosque',
|
704 |
+
'brunch',
|
705 |
+
'beanie',
|
706 |
+
'office building',
|
707 |
+
'pattern',
|
708 |
+
'calendar',
|
709 |
+
'indoor',
|
710 |
+
'pepper',
|
711 |
+
'ledge',
|
712 |
+
'trail',
|
713 |
+
'fuel',
|
714 |
+
'laptop computer',
|
715 |
+
'tennis shoe',
|
716 |
+
'deck chair',
|
717 |
+
'guitarist',
|
718 |
+
'barn',
|
719 |
+
'surgery',
|
720 |
+
'cartoon illustration',
|
721 |
+
'nebula',
|
722 |
+
'railroad',
|
723 |
+
'mountain goat',
|
724 |
+
'goose',
|
725 |
+
'car door',
|
726 |
+
'cheer',
|
727 |
+
'liquid',
|
728 |
+
'hardwood floor',
|
729 |
+
'pathway',
|
730 |
+
'acorn',
|
731 |
+
'gull',
|
732 |
+
'airliner',
|
733 |
+
'couch',
|
734 |
+
'lake house',
|
735 |
+
'spaghetti',
|
736 |
+
'promenade',
|
737 |
+
'collection',
|
738 |
+
'garden',
|
739 |
+
'bank',
|
740 |
+
'robin',
|
741 |
+
'tennis ball',
|
742 |
+
'peony',
|
743 |
+
'gymnast',
|
744 |
+
'lavender',
|
745 |
+
'deck',
|
746 |
+
'test',
|
747 |
+
'riverside',
|
748 |
+
'rapper',
|
749 |
+
'domino',
|
750 |
+
'bride',
|
751 |
+
'mouse',
|
752 |
+
'basil',
|
753 |
+
'wedding couple',
|
754 |
+
'ocean wave',
|
755 |
+
'arm',
|
756 |
+
'kitchen floor',
|
757 |
+
'grove',
|
758 |
+
'family member',
|
759 |
+
'backyard',
|
760 |
+
'raspberry',
|
761 |
+
'forest fire',
|
762 |
+
'officer',
|
763 |
+
'hibiscus',
|
764 |
+
'canyon',
|
765 |
+
'composer',
|
766 |
+
'signature',
|
767 |
+
'olive oil',
|
768 |
+
'hibiscus flower',
|
769 |
+
'rose',
|
770 |
+
'vector icon',
|
771 |
+
'sunrise',
|
772 |
+
'horseback',
|
773 |
+
'motor scooter',
|
774 |
+
'office worker',
|
775 |
+
'tradition',
|
776 |
+
'ingredient',
|
777 |
+
'washing machine',
|
778 |
+
'lighting',
|
779 |
+
'bagel',
|
780 |
+
'sailboat',
|
781 |
+
'policeman',
|
782 |
+
'mare',
|
783 |
+
'graphic',
|
784 |
+
'halloween pumpkin',
|
785 |
+
'stock',
|
786 |
+
'pilot',
|
787 |
+
'education',
|
788 |
+
'team',
|
789 |
+
'body',
|
790 |
+
'horse',
|
791 |
+
'kimono',
|
792 |
+
'bazaar',
|
793 |
+
'bag',
|
794 |
+
'recording studio',
|
795 |
+
'parsley',
|
796 |
+
'entrance',
|
797 |
+
'denim',
|
798 |
+
'vet',
|
799 |
+
'horse farm',
|
800 |
+
'charcoal',
|
801 |
+
'architecture',
|
802 |
+
'glass vase',
|
803 |
+
'puppy',
|
804 |
+
'estuary',
|
805 |
+
'television show host',
|
806 |
+
'city bus',
|
807 |
+
'shoulder',
|
808 |
+
'beast',
|
809 |
+
'balance',
|
810 |
+
'golfer',
|
811 |
+
'roadside',
|
812 |
+
'denim jacket',
|
813 |
+
'stone wall',
|
814 |
+
'counter top',
|
815 |
+
'app icon',
|
816 |
+
'toast',
|
817 |
+
'head coach',
|
818 |
+
'ham',
|
819 |
+
'warrior',
|
820 |
+
'gem',
|
821 |
+
'refrigerator',
|
822 |
+
'snowman',
|
823 |
+
'construction worker',
|
824 |
+
'coal',
|
825 |
+
'website',
|
826 |
+
'morning fog',
|
827 |
+
'mustard',
|
828 |
+
'human',
|
829 |
+
'owl',
|
830 |
+
'puppy dog',
|
831 |
+
'piggy bank',
|
832 |
+
'vegetation',
|
833 |
+
'pirate',
|
834 |
+
'action film',
|
835 |
+
'marshmallow',
|
836 |
+
'thanksgiving',
|
837 |
+
'business',
|
838 |
+
'disease',
|
839 |
+
'signage',
|
840 |
+
'greeting',
|
841 |
+
'skate park',
|
842 |
+
'tile',
|
843 |
+
'mouth',
|
844 |
+
'spinach',
|
845 |
+
'vacation',
|
846 |
+
'leader',
|
847 |
+
'shrine',
|
848 |
+
'walker',
|
849 |
+
'science fiction film',
|
850 |
+
'bill',
|
851 |
+
'rabbit',
|
852 |
+
'motor boat',
|
853 |
+
'bar',
|
854 |
+
'radio',
|
855 |
+
'barge',
|
856 |
+
'tail',
|
857 |
+
'chainsaw',
|
858 |
+
'gallery',
|
859 |
+
'rainbow',
|
860 |
+
'pasta',
|
861 |
+
'padlock',
|
862 |
+
'web',
|
863 |
+
'pastry',
|
864 |
+
'ink',
|
865 |
+
'reef',
|
866 |
+
'school uniform',
|
867 |
+
'shawl',
|
868 |
+
'treasure',
|
869 |
+
'peach',
|
870 |
+
'dinner table',
|
871 |
+
'injury',
|
872 |
+
'harbor',
|
873 |
+
'witch',
|
874 |
+
'car dealership',
|
875 |
+
'litter',
|
876 |
+
'gesture',
|
877 |
+
'documentary',
|
878 |
+
'marriage',
|
879 |
+
'sea shell',
|
880 |
+
'priest',
|
881 |
+
'dome',
|
882 |
+
'kit',
|
883 |
+
'icon',
|
884 |
+
'seaside',
|
885 |
+
'bucket',
|
886 |
+
'entertainment',
|
887 |
+
'stable',
|
888 |
+
'hat',
|
889 |
+
'puddle',
|
890 |
+
'sock',
|
891 |
+
'shopper',
|
892 |
+
'technology',
|
893 |
+
'harbour',
|
894 |
+
'orbit',
|
895 |
+
'antler',
|
896 |
+
'tube',
|
897 |
+
'flag waving',
|
898 |
+
'cook',
|
899 |
+
'tight',
|
900 |
+
'commander',
|
901 |
+
'farmland',
|
902 |
+
'switch',
|
903 |
+
'hiker',
|
904 |
+
'wedding ceremony',
|
905 |
+
'award ceremony',
|
906 |
+
'champion',
|
907 |
+
'chopstick',
|
908 |
+
'farmhouse',
|
909 |
+
'performer',
|
910 |
+
'spike',
|
911 |
+
'accident',
|
912 |
+
'cruise ship',
|
913 |
+
'passenger train',
|
914 |
+
'attraction',
|
915 |
+
'entertainer',
|
916 |
+
'rear view',
|
917 |
+
'sidewalk',
|
918 |
+
'parade',
|
919 |
+
'racing',
|
920 |
+
'plane',
|
921 |
+
'ritual',
|
922 |
+
'peacock',
|
923 |
+
'pocket',
|
924 |
+
'plum',
|
925 |
+
'drop',
|
926 |
+
'carrot',
|
927 |
+
'floor',
|
928 |
+
'sunset',
|
929 |
+
'troop',
|
930 |
+
'architect',
|
931 |
+
'coffee table',
|
932 |
+
'dust',
|
933 |
+
'outline',
|
934 |
+
'leather',
|
935 |
+
'charity event',
|
936 |
+
'heat',
|
937 |
+
'whale',
|
938 |
+
'laundry',
|
939 |
+
'coconut tree',
|
940 |
+
'crosswalk',
|
941 |
+
'pony',
|
942 |
+
'ant',
|
943 |
+
'pipe',
|
944 |
+
'string',
|
945 |
+
'coat',
|
946 |
+
'angel',
|
947 |
+
'beef',
|
948 |
+
'church tower',
|
949 |
+
'dish',
|
950 |
+
'pitch',
|
951 |
+
'cupboard',
|
952 |
+
'thermometer',
|
953 |
+
'dirt field',
|
954 |
+
'fireworks',
|
955 |
+
'minute',
|
956 |
+
'cane',
|
957 |
+
'pajama',
|
958 |
+
'flower garden',
|
959 |
+
'autumn',
|
960 |
+
'trash can',
|
961 |
+
'dachshund',
|
962 |
+
'banana tree',
|
963 |
+
'tray',
|
964 |
+
'moose',
|
965 |
+
'roadway',
|
966 |
+
'carnival',
|
967 |
+
'antenna',
|
968 |
+
'pole',
|
969 |
+
'castle wall',
|
970 |
+
'ram',
|
971 |
+
'cattle',
|
972 |
+
'hay',
|
973 |
+
'cookie',
|
974 |
+
'swimmer',
|
975 |
+
'baseball team',
|
976 |
+
'strait',
|
977 |
+
'hedge',
|
978 |
+
'jet',
|
979 |
+
'fire pit',
|
980 |
+
'octopus',
|
981 |
+
'calf',
|
982 |
+
'cube',
|
983 |
+
'opera',
|
984 |
+
'cardboard box',
|
985 |
+
'tiara',
|
986 |
+
'kitchen sink',
|
987 |
+
'prairie',
|
988 |
+
'bowl',
|
989 |
+
'galaxy',
|
990 |
+
'straw hat',
|
991 |
+
'linen',
|
992 |
+
'ski resort',
|
993 |
+
'stitch',
|
994 |
+
'street lamp',
|
995 |
+
'motorist',
|
996 |
+
'icicle',
|
997 |
+
'stain',
|
998 |
+
'flora',
|
999 |
+
'drain',
|
1000 |
+
'kitchen cabinet',
|
1001 |
+
'decor',
|
1002 |
+
'bouquet',
|
1003 |
+
'pound',
|
1004 |
+
'interior design',
|
1005 |
+
'nail polish',
|
1006 |
+
'figurine',
|
1007 |
+
'tomb',
|
1008 |
+
'disc',
|
1009 |
+
'twist',
|
1010 |
+
'blouse',
|
1011 |
+
'ribbon',
|
1012 |
+
'figure',
|
1013 |
+
'burger',
|
1014 |
+
'cork',
|
1015 |
+
'soccer goalkeeper',
|
1016 |
+
'train bridge',
|
1017 |
+
'drinking water',
|
1018 |
+
'dew',
|
1019 |
+
'baker',
|
1020 |
+
'storm cloud',
|
1021 |
+
'tarmac',
|
1022 |
+
'tv drama',
|
1023 |
+
'sponge',
|
1024 |
+
'magnet',
|
1025 |
+
'sailor',
|
1026 |
+
'entry',
|
1027 |
+
'swan',
|
1028 |
+
'exercise',
|
1029 |
+
'sloth',
|
1030 |
+
'jewel',
|
1031 |
+
'scuba diver',
|
1032 |
+
'bite',
|
1033 |
+
'cat tree',
|
1034 |
+
'tent',
|
1035 |
+
'can',
|
1036 |
+
'tennis match',
|
1037 |
+
'ecosystem',
|
1038 |
+
'picket fence',
|
1039 |
+
'palm',
|
1040 |
+
'train car',
|
1041 |
+
'frying pan',
|
1042 |
+
'rally',
|
1043 |
+
'tablet pc',
|
1044 |
+
'reindeer',
|
1045 |
+
'image',
|
1046 |
+
'wolf',
|
1047 |
+
'chin',
|
1048 |
+
'conservatory',
|
1049 |
+
'flood water',
|
1050 |
+
'cityscape',
|
1051 |
+
'beach sand',
|
1052 |
+
'car park',
|
1053 |
+
'pavement',
|
1054 |
+
'farm field',
|
1055 |
+
'swimming',
|
1056 |
+
'winter storm',
|
1057 |
+
'stem',
|
1058 |
+
'pillow',
|
1059 |
+
'inning',
|
1060 |
+
'gorilla',
|
1061 |
+
'desk',
|
1062 |
+
'avenue',
|
1063 |
+
'fern',
|
1064 |
+
'money',
|
1065 |
+
'pearl',
|
1066 |
+
'train station',
|
1067 |
+
'skillet',
|
1068 |
+
'nap',
|
1069 |
+
'barber',
|
1070 |
+
'library',
|
1071 |
+
'freezer',
|
1072 |
+
'label',
|
1073 |
+
'rainforest',
|
1074 |
+
'parking sign',
|
1075 |
+
'mirror',
|
1076 |
+
'wing',
|
1077 |
+
'noodle',
|
1078 |
+
'press room',
|
1079 |
+
'sculpture',
|
1080 |
+
'tablet',
|
1081 |
+
'viewer',
|
1082 |
+
'prayer',
|
1083 |
+
'mini',
|
1084 |
+
'mechanic',
|
1085 |
+
'laugh',
|
1086 |
+
'rice field',
|
1087 |
+
'hand',
|
1088 |
+
'mustache',
|
1089 |
+
'mountain road',
|
1090 |
+
'catwalk',
|
1091 |
+
'conference',
|
1092 |
+
'cape',
|
1093 |
+
'installation',
|
1094 |
+
'musician',
|
1095 |
+
'stream',
|
1096 |
+
'machine',
|
1097 |
+
'speech',
|
1098 |
+
'crocodile',
|
1099 |
+
'soccer match',
|
1100 |
+
'town square',
|
1101 |
+
'passport',
|
1102 |
+
'post box',
|
1103 |
+
'point',
|
1104 |
+
'stone building',
|
1105 |
+
'motorway',
|
1106 |
+
'mix',
|
1107 |
+
'dentist',
|
1108 |
+
'businessperson',
|
1109 |
+
'happiness',
|
1110 |
+
'boat',
|
1111 |
+
'vineyard',
|
1112 |
+
'treadmill',
|
1113 |
+
'glass wall',
|
1114 |
+
'water droplet',
|
1115 |
+
'coffee mug',
|
1116 |
+
'graduate',
|
1117 |
+
'sunflower',
|
1118 |
+
'parliament',
|
1119 |
+
'shepherd',
|
1120 |
+
'movie',
|
1121 |
+
'wine',
|
1122 |
+
'orchard',
|
1123 |
+
'tulip',
|
1124 |
+
'motherboard',
|
1125 |
+
'cup',
|
1126 |
+
'broom',
|
1127 |
+
'spot',
|
1128 |
+
'drawing',
|
1129 |
+
'polo shirt',
|
1130 |
+
'graduation',
|
1131 |
+
'film producer',
|
1132 |
+
'moonlight',
|
1133 |
+
'glow',
|
1134 |
+
'film format',
|
1135 |
+
't shirt',
|
1136 |
+
'rock face',
|
1137 |
+
'sword',
|
1138 |
+
'clinic',
|
1139 |
+
'festival day',
|
1140 |
+
'meadow',
|
1141 |
+
'staple',
|
1142 |
+
'pupil',
|
1143 |
+
'training ground',
|
1144 |
+
'rider',
|
1145 |
+
'flower',
|
1146 |
+
'foal',
|
1147 |
+
'wharf',
|
1148 |
+
'foot bridge',
|
1149 |
+
'shooting',
|
1150 |
+
'top',
|
1151 |
+
'mast',
|
1152 |
+
'police car',
|
1153 |
+
'robe',
|
1154 |
+
'wedding bouquet',
|
1155 |
+
'stop sign',
|
1156 |
+
'birthday cake',
|
1157 |
+
'glitter',
|
1158 |
+
'butter',
|
1159 |
+
'scooter',
|
1160 |
+
'tundra',
|
1161 |
+
'superhero',
|
1162 |
+
'pocket watch',
|
1163 |
+
'inscription',
|
1164 |
+
'youngster',
|
1165 |
+
'fruit tree',
|
1166 |
+
'movie poster',
|
1167 |
+
'engine',
|
1168 |
+
'foundation',
|
1169 |
+
'motorcyclist',
|
1170 |
+
'take',
|
1171 |
+
'woman',
|
1172 |
+
'antelope',
|
1173 |
+
'country artist',
|
1174 |
+
'road trip',
|
1175 |
+
'typewriter',
|
1176 |
+
'tuxedo',
|
1177 |
+
'brand',
|
1178 |
+
'pine',
|
1179 |
+
'bathroom',
|
1180 |
+
'paradise',
|
1181 |
+
'texture',
|
1182 |
+
'balloon',
|
1183 |
+
'dining table',
|
1184 |
+
'home',
|
1185 |
+
'computer screen',
|
1186 |
+
'actor',
|
1187 |
+
'clip',
|
1188 |
+
'tv tower',
|
1189 |
+
'panorama',
|
1190 |
+
'summit',
|
1191 |
+
'cat',
|
1192 |
+
'plot',
|
1193 |
+
'eagle',
|
1194 |
+
'dancer',
|
1195 |
+
'pup',
|
1196 |
+
'studio shot',
|
1197 |
+
'tear',
|
1198 |
+
'bird bath',
|
1199 |
+
'classroom',
|
1200 |
+
'bookstore',
|
1201 |
+
'city wall',
|
1202 |
+
'tv programme',
|
1203 |
+
'blade',
|
1204 |
+
'easel',
|
1205 |
+
'buttercream',
|
1206 |
+
'sweet',
|
1207 |
+
'designer',
|
1208 |
+
'diamond',
|
1209 |
+
'handshake',
|
1210 |
+
'herb',
|
1211 |
+
'corn field',
|
1212 |
+
'seafront',
|
1213 |
+
'concrete',
|
1214 |
+
'street artist',
|
1215 |
+
'gas',
|
1216 |
+
'stamp',
|
1217 |
+
'window display',
|
1218 |
+
'paper',
|
1219 |
+
'note',
|
1220 |
+
'pint',
|
1221 |
+
'quarry',
|
1222 |
+
'research',
|
1223 |
+
'fixture',
|
1224 |
+
'manager',
|
1225 |
+
'soil',
|
1226 |
+
'leopard',
|
1227 |
+
'board game',
|
1228 |
+
'ladder',
|
1229 |
+
'stop light',
|
1230 |
+
'island',
|
1231 |
+
'ramp',
|
1232 |
+
'football match',
|
1233 |
+
'icing',
|
1234 |
+
'drill',
|
1235 |
+
'currency',
|
1236 |
+
'summer evening',
|
1237 |
+
'topping',
|
1238 |
+
'pyramid',
|
1239 |
+
'pomegranate',
|
1240 |
+
'cell',
|
1241 |
+
'ivy',
|
1242 |
+
'squad',
|
1243 |
+
'scenery',
|
1244 |
+
'computer',
|
1245 |
+
'locomotive',
|
1246 |
+
'surf',
|
1247 |
+
'mascot',
|
1248 |
+
'dune',
|
1249 |
+
'path',
|
1250 |
+
'duck',
|
1251 |
+
'twilight',
|
1252 |
+
'wire',
|
1253 |
+
'bow tie',
|
1254 |
+
'strike',
|
1255 |
+
'cormorant',
|
1256 |
+
'car wash',
|
1257 |
+
'crane',
|
1258 |
+
'market',
|
1259 |
+
'philosopher',
|
1260 |
+
'alarm clock',
|
1261 |
+
'camera',
|
1262 |
+
'birch',
|
1263 |
+
'greeting card',
|
1264 |
+
'plain',
|
1265 |
+
'clay',
|
1266 |
+
'donut',
|
1267 |
+
'lock',
|
1268 |
+
'moth',
|
1269 |
+
'laboratory',
|
1270 |
+
'fan',
|
1271 |
+
'violin',
|
1272 |
+
'jazz fusion artist',
|
1273 |
+
'mountain biker',
|
1274 |
+
'terrain',
|
1275 |
+
'magazine',
|
1276 |
+
'pickup',
|
1277 |
+
'comedy film',
|
1278 |
+
'smartphone',
|
1279 |
+
'film',
|
1280 |
+
'bed',
|
1281 |
+
'microwave oven',
|
1282 |
+
'tournament',
|
1283 |
+
'lawn',
|
1284 |
+
'car window',
|
1285 |
+
'alligator',
|
1286 |
+
'screen',
|
1287 |
+
'jetty',
|
1288 |
+
'shopping bag',
|
1289 |
+
'landscape view',
|
1290 |
+
'cabinetry',
|
1291 |
+
'friendly match',
|
1292 |
+
'thing',
|
1293 |
+
'petal',
|
1294 |
+
'shopping center',
|
1295 |
+
'transport',
|
1296 |
+
'ballet dancer',
|
1297 |
+
'shoreline',
|
1298 |
+
'princess',
|
1299 |
+
'car seat',
|
1300 |
+
'parking meter',
|
1301 |
+
'green',
|
1302 |
+
'vodka',
|
1303 |
+
'band',
|
1304 |
+
'rock',
|
1305 |
+
'costume',
|
1306 |
+
'warning sign',
|
1307 |
+
'strip',
|
1308 |
+
'plaque',
|
1309 |
+
'wheelchair',
|
1310 |
+
'headband',
|
1311 |
+
'ginger',
|
1312 |
+
'dice',
|
1313 |
+
'media',
|
1314 |
+
'hairdresser',
|
1315 |
+
'press',
|
1316 |
+
'living room',
|
1317 |
+
'stove',
|
1318 |
+
'player',
|
1319 |
+
'cherry',
|
1320 |
+
'workshop',
|
1321 |
+
'carving',
|
1322 |
+
'embroidery',
|
1323 |
+
'doodle',
|
1324 |
+
'adventure',
|
1325 |
+
'rugby player',
|
1326 |
+
'monument',
|
1327 |
+
'brush',
|
1328 |
+
'marker',
|
1329 |
+
'loft',
|
1330 |
+
'postcard',
|
1331 |
+
'collage',
|
1332 |
+
'ball',
|
1333 |
+
'professor',
|
1334 |
+
'dresser',
|
1335 |
+
'gig',
|
1336 |
+
'festival',
|
1337 |
+
'blackbird',
|
1338 |
+
'makeup artist',
|
1339 |
+
'video camera',
|
1340 |
+
'sticker',
|
1341 |
+
'peak',
|
1342 |
+
'wildflower',
|
1343 |
+
'santa hat',
|
1344 |
+
'rodeo',
|
1345 |
+
'wedding photographer',
|
1346 |
+
'guy',
|
1347 |
+
'staff',
|
1348 |
+
'waterfall',
|
1349 |
+
'operation',
|
1350 |
+
'defender',
|
1351 |
+
'falcon',
|
1352 |
+
'haze',
|
1353 |
+
'individual',
|
1354 |
+
'gentleman',
|
1355 |
+
'greyhound',
|
1356 |
+
'rocking chair',
|
1357 |
+
'rice',
|
1358 |
+
'garbage',
|
1359 |
+
'platter',
|
1360 |
+
'chocolate',
|
1361 |
+
'splash',
|
1362 |
+
'business suit',
|
1363 |
+
'cheetah',
|
1364 |
+
'valley',
|
1365 |
+
'maze',
|
1366 |
+
'trampoline',
|
1367 |
+
'garland',
|
1368 |
+
'slalom',
|
1369 |
+
'unicorn',
|
1370 |
+
'tree stump',
|
1371 |
+
'painting',
|
1372 |
+
'romance',
|
1373 |
+
'fight',
|
1374 |
+
'alcohol',
|
1375 |
+
'ghost',
|
1376 |
+
'fondant',
|
1377 |
+
'spa',
|
1378 |
+
'shutter',
|
1379 |
+
'death',
|
1380 |
+
'demonstration',
|
1381 |
+
'cotton',
|
1382 |
+
'pier',
|
1383 |
+
'flea market',
|
1384 |
+
'history',
|
1385 |
+
'savannah',
|
1386 |
+
'fist',
|
1387 |
+
'aisle',
|
1388 |
+
'crew',
|
1389 |
+
'jug',
|
1390 |
+
'pose',
|
1391 |
+
'anchor',
|
1392 |
+
'teapot',
|
1393 |
+
'boat house',
|
1394 |
+
'business team',
|
1395 |
+
'tripod',
|
1396 |
+
'bee',
|
1397 |
+
'pebble',
|
1398 |
+
'mattress',
|
1399 |
+
'canvas',
|
1400 |
+
'hallway',
|
1401 |
+
'campaign',
|
1402 |
+
'pod',
|
1403 |
+
'lake district',
|
1404 |
+
'article',
|
1405 |
+
'white',
|
1406 |
+
'sofa',
|
1407 |
+
'honey',
|
1408 |
+
'marathon',
|
1409 |
+
'pancake',
|
1410 |
+
'tourist attraction',
|
1411 |
+
'wedding gown',
|
1412 |
+
'battle',
|
1413 |
+
'shelving',
|
1414 |
+
'sea',
|
1415 |
+
'sheet music',
|
1416 |
+
'pie',
|
1417 |
+
'yarn',
|
1418 |
+
'construction site',
|
1419 |
+
'flyer',
|
1420 |
+
'tie',
|
1421 |
+
'star',
|
1422 |
+
'lettuce',
|
1423 |
+
'martial artist',
|
1424 |
+
'dart',
|
1425 |
+
'straw',
|
1426 |
+
'reflection',
|
1427 |
+
'conference room',
|
1428 |
+
'temperature',
|
1429 |
+
'rugby',
|
1430 |
+
'mosquito',
|
1431 |
+
'physicist',
|
1432 |
+
'rock climber',
|
1433 |
+
'crash',
|
1434 |
+
'backdrop',
|
1435 |
+
'toilet seat',
|
1436 |
+
'sand castle',
|
1437 |
+
'water park',
|
1438 |
+
'toy car',
|
1439 |
+
'waste',
|
1440 |
+
'luxury',
|
1441 |
+
'hangar',
|
1442 |
+
'rv',
|
1443 |
+
'tree trunk',
|
1444 |
+
'board',
|
1445 |
+
'gold',
|
1446 |
+
'project picture',
|
1447 |
+
'cap',
|
1448 |
+
'cottage',
|
1449 |
+
'relief',
|
1450 |
+
'attire',
|
1451 |
+
'microscope',
|
1452 |
+
'battery',
|
1453 |
+
'roll',
|
1454 |
+
'line',
|
1455 |
+
'parking garage',
|
1456 |
+
'crystal',
|
1457 |
+
'broadcasting',
|
1458 |
+
'brick wall',
|
1459 |
+
'lab',
|
1460 |
+
'flooring',
|
1461 |
+
'meeting',
|
1462 |
+
'3d cg rendering',
|
1463 |
+
'desktop computer',
|
1464 |
+
'cowboy',
|
1465 |
+
'sailing ship',
|
1466 |
+
'junction',
|
1467 |
+
'hairstyle',
|
1468 |
+
'homework',
|
1469 |
+
'profile',
|
1470 |
+
'model',
|
1471 |
+
'flower pot',
|
1472 |
+
'street light',
|
1473 |
+
'salt lake',
|
1474 |
+
'maple',
|
1475 |
+
'space',
|
1476 |
+
'blizzard',
|
1477 |
+
'throw',
|
1478 |
+
'zebras',
|
1479 |
+
'brochure',
|
1480 |
+
'constellation',
|
1481 |
+
'beak',
|
1482 |
+
'kilt',
|
1483 |
+
'pond',
|
1484 |
+
'blue sky',
|
1485 |
+
'sneaker',
|
1486 |
+
'sand dune',
|
1487 |
+
'morning sun',
|
1488 |
+
'almond',
|
1489 |
+
'grill',
|
1490 |
+
'curl',
|
1491 |
+
'basketball girl game',
|
1492 |
+
'chameleon',
|
1493 |
+
'toilet bowl',
|
1494 |
+
'prince',
|
1495 |
+
'keyboard',
|
1496 |
+
'queen',
|
1497 |
+
'computer monitor',
|
1498 |
+
'writing',
|
1499 |
+
'crown',
|
1500 |
+
'basilica',
|
1501 |
+
'kiss',
|
1502 |
+
'house',
|
1503 |
+
'parking',
|
1504 |
+
'football competition',
|
1505 |
+
'shell',
|
1506 |
+
'sport equipment',
|
1507 |
+
'comedy',
|
1508 |
+
'baboon',
|
1509 |
+
'vendor',
|
1510 |
+
'rise building',
|
1511 |
+
'wrap',
|
1512 |
+
'food truck',
|
1513 |
+
'cat bed',
|
1514 |
+
'rickshaw',
|
1515 |
+
'flare',
|
1516 |
+
'teal',
|
1517 |
+
'nectar',
|
1518 |
+
'eclipse',
|
1519 |
+
'vehicle',
|
1520 |
+
'steam locomotive',
|
1521 |
+
'gorge',
|
1522 |
+
'cow',
|
1523 |
+
'christmas card',
|
1524 |
+
'demonstrator',
|
1525 |
+
'memorial',
|
1526 |
+
'towel',
|
1527 |
+
'jewellery',
|
1528 |
+
'train',
|
1529 |
+
'frisbee',
|
1530 |
+
'baseball game',
|
1531 |
+
'fur',
|
1532 |
+
'afternoon sun',
|
1533 |
+
'community',
|
1534 |
+
'sparkler',
|
1535 |
+
'bandage',
|
1536 |
+
'firework',
|
1537 |
+
'dollar',
|
1538 |
+
'pasture',
|
1539 |
+
'video',
|
1540 |
+
'bus',
|
1541 |
+
'tree house',
|
1542 |
+
'seashore',
|
1543 |
+
'field',
|
1544 |
+
'hamburger',
|
1545 |
+
'souvenir',
|
1546 |
+
'hedgehog',
|
1547 |
+
'worm',
|
1548 |
+
'pine cone',
|
1549 |
+
'osprey',
|
1550 |
+
'dinosaur',
|
1551 |
+
'vegetable',
|
1552 |
+
'junk',
|
1553 |
+
'poster',
|
1554 |
+
'army',
|
1555 |
+
'winger',
|
1556 |
+
'bundle',
|
1557 |
+
'stage',
|
1558 |
+
'growth',
|
1559 |
+
'wedding party',
|
1560 |
+
'service',
|
1561 |
+
'blanket',
|
1562 |
+
'ruler',
|
1563 |
+
'eye',
|
1564 |
+
'credit card',
|
1565 |
+
'castle',
|
1566 |
+
'diner',
|
1567 |
+
'hut',
|
1568 |
+
'elk',
|
1569 |
+
'hard rock artist',
|
1570 |
+
'nun',
|
1571 |
+
'dog breed',
|
1572 |
+
'nest',
|
1573 |
+
'drama film',
|
1574 |
+
'number icon',
|
1575 |
+
'water tank',
|
1576 |
+
'giraffe',
|
1577 |
+
'altar',
|
1578 |
+
'pavilion',
|
1579 |
+
'tv personality',
|
1580 |
+
'suv',
|
1581 |
+
'street vendor',
|
1582 |
+
'street sign',
|
1583 |
+
'ditch',
|
1584 |
+
'debris',
|
1585 |
+
'foam',
|
1586 |
+
'takeoff',
|
1587 |
+
'spice',
|
1588 |
+
'mountain lake',
|
1589 |
+
'tea',
|
1590 |
+
'orchestra',
|
1591 |
+
'spacecraft',
|
1592 |
+
'counter',
|
1593 |
+
'abbey',
|
1594 |
+
'mountain',
|
1595 |
+
'hydrangea',
|
1596 |
+
'racer',
|
1597 |
+
'orange tree',
|
1598 |
+
'tide',
|
1599 |
+
'cowboy hat',
|
1600 |
+
'rapid',
|
1601 |
+
'town',
|
1602 |
+
'wild',
|
1603 |
+
'herd',
|
1604 |
+
'vein',
|
1605 |
+
'driveway',
|
1606 |
+
'jar',
|
1607 |
+
'bark',
|
1608 |
+
'illustration',
|
1609 |
+
'horror film',
|
1610 |
+
'corn',
|
1611 |
+
'stroller',
|
1612 |
+
'industry',
|
1613 |
+
'mountain stream',
|
1614 |
+
'gym',
|
1615 |
+
'neckline',
|
1616 |
+
'pan',
|
1617 |
+
'client',
|
1618 |
+
'spectator',
|
1619 |
+
'eggplant',
|
1620 |
+
'camper',
|
1621 |
+
'fawn',
|
1622 |
+
'hoodie',
|
1623 |
+
'meat',
|
1624 |
+
'lemonade',
|
1625 |
+
'food market',
|
1626 |
+
'slum',
|
1627 |
+
'comic book character',
|
1628 |
+
'flower market',
|
1629 |
+
'love',
|
1630 |
+
'palace',
|
1631 |
+
'gun',
|
1632 |
+
'heel',
|
1633 |
+
'shopping street',
|
1634 |
+
'shooting basketball guard',
|
1635 |
+
'family photo',
|
1636 |
+
'rooftop',
|
1637 |
+
'laundry basket',
|
1638 |
+
'airport runway',
|
1639 |
+
'horn',
|
1640 |
+
'face mask',
|
1641 |
+
'flight',
|
1642 |
+
'appetizer',
|
1643 |
+
'violet',
|
1644 |
+
'country lane',
|
1645 |
+
'cement',
|
1646 |
+
'instrument',
|
1647 |
+
'tv actor',
|
1648 |
+
'spark',
|
1649 |
+
'celebrity',
|
1650 |
+
'award',
|
1651 |
+
'country house',
|
1652 |
+
'standing',
|
1653 |
+
'auction',
|
1654 |
+
'date',
|
1655 |
+
'engagement',
|
1656 |
+
'puck',
|
1657 |
+
'advertisement',
|
1658 |
+
'chair',
|
1659 |
+
'zebra',
|
1660 |
+
'driftwood',
|
1661 |
+
'bumblebee',
|
1662 |
+
'maple leaf',
|
1663 |
+
'bonnet',
|
1664 |
+
'orange',
|
1665 |
+
'water tower',
|
1666 |
+
'door',
|
1667 |
+
'singer',
|
1668 |
+
'floor plan',
|
1669 |
+
'discussion',
|
1670 |
+
'theatre',
|
1671 |
+
'pilgrim',
|
1672 |
+
'mug',
|
1673 |
+
'branch',
|
1674 |
+
'window sill',
|
1675 |
+
'baseball pitcher',
|
1676 |
+
'bakery',
|
1677 |
+
'lollipop',
|
1678 |
+
'basketball player',
|
1679 |
+
'toilet paper',
|
1680 |
+
'chalkboard',
|
1681 |
+
'cabin',
|
1682 |
+
'sign',
|
1683 |
+
'night sky',
|
1684 |
+
'cannon',
|
1685 |
+
'fishing net',
|
1686 |
+
'submarine',
|
1687 |
+
'suit',
|
1688 |
+
'fur coat',
|
1689 |
+
'wine bottle',
|
1690 |
+
'folder',
|
1691 |
+
'street art',
|
1692 |
+
'suspension bridge',
|
1693 |
+
'evening sky',
|
1694 |
+
'billboard',
|
1695 |
+
'postage stamp',
|
1696 |
+
'newspaper',
|
1697 |
+
'transportation',
|
1698 |
+
'surgeon',
|
1699 |
+
'light',
|
1700 |
+
'park',
|
1701 |
+
'horizon',
|
1702 |
+
'road',
|
1703 |
+
'sand bar',
|
1704 |
+
'trumpet',
|
1705 |
+
'lounge',
|
1706 |
+
'cloud forest',
|
1707 |
+
'birthday celebration',
|
1708 |
+
'balcony',
|
1709 |
+
'anime',
|
1710 |
+
'beehive',
|
1711 |
+
'umbrella',
|
1712 |
+
'goldfish',
|
1713 |
+
'baseball cap',
|
1714 |
+
'waterhole',
|
1715 |
+
'ceiling',
|
1716 |
+
'carousel',
|
1717 |
+
'backpack',
|
1718 |
+
'plant pot',
|
1719 |
+
'atmosphere',
|
1720 |
+
'sunflower field',
|
1721 |
+
'spire',
|
1722 |
+
'vision',
|
1723 |
+
'woodpecker',
|
1724 |
+
'chip',
|
1725 |
+
'pool table',
|
1726 |
+
'lotus flower',
|
1727 |
+
'cone',
|
1728 |
+
'humpback whale',
|
1729 |
+
'reservoir',
|
1730 |
+
'hunt',
|
1731 |
+
'piano',
|
1732 |
+
'plate',
|
1733 |
+
'dining area',
|
1734 |
+
'luggage',
|
1735 |
+
'skier',
|
1736 |
+
'dance floor',
|
1737 |
+
'crow',
|
1738 |
+
'stair',
|
1739 |
+
'overpass',
|
1740 |
+
'opera house',
|
1741 |
+
'bear',
|
1742 |
+
'jazz artist',
|
1743 |
+
'water',
|
1744 |
+
'vessel',
|
1745 |
+
'cast',
|
1746 |
+
'yard',
|
1747 |
+
'cathedral',
|
1748 |
+
'basketball hoop',
|
1749 |
+
'graveyard',
|
1750 |
+
'sound',
|
1751 |
+
'berry',
|
1752 |
+
'onlooker',
|
1753 |
+
'fauna',
|
1754 |
+
'birch tree',
|
1755 |
+
'retail',
|
1756 |
+
'hill',
|
1757 |
+
'skeleton',
|
1758 |
+
'journalist',
|
1759 |
+
'frost',
|
1760 |
+
'basket',
|
1761 |
+
'nail',
|
1762 |
+
'dusk',
|
1763 |
+
'trash',
|
1764 |
+
'dawn',
|
1765 |
+
'clover',
|
1766 |
+
'hen',
|
1767 |
+
'volcano',
|
1768 |
+
'basketball coach',
|
1769 |
+
'home decor',
|
1770 |
+
'charge',
|
1771 |
+
'haircut',
|
1772 |
+
'sense',
|
1773 |
+
'university',
|
1774 |
+
'lizard',
|
1775 |
+
'daisy',
|
1776 |
+
'tablet computer',
|
1777 |
+
'grass field',
|
1778 |
+
'prison',
|
1779 |
+
'metal artist',
|
1780 |
+
'bathroom mirror',
|
1781 |
+
'window frame',
|
1782 |
+
'chest',
|
1783 |
+
'flavor',
|
1784 |
+
'pop country artist',
|
1785 |
+
'market square',
|
1786 |
+
'monkey',
|
1787 |
+
'blog',
|
1788 |
+
'deer',
|
1789 |
+
'speech bubble',
|
1790 |
+
'dog',
|
1791 |
+
'independence day',
|
1792 |
+
'girl',
|
1793 |
+
'boy',
|
1794 |
+
'tartan',
|
1795 |
+
'furniture',
|
1796 |
+
'appliance',
|
1797 |
+
'office window',
|
1798 |
+
'fish boat',
|
1799 |
+
'sand box',
|
1800 |
+
'tv sitcom',
|
1801 |
+
'drama',
|
1802 |
+
'sleigh',
|
1803 |
+
'depression',
|
1804 |
+
'paper towel',
|
1805 |
+
'baseball',
|
1806 |
+
'protestor',
|
1807 |
+
'grape',
|
1808 |
+
'wedding cake',
|
1809 |
+
'invitation',
|
1810 |
+
'accessory',
|
1811 |
+
'pick',
|
1812 |
+
'grandparent',
|
1813 |
+
'racket',
|
1814 |
+
'tea plantation',
|
1815 |
+
'outdoors',
|
1816 |
+
'egg',
|
1817 |
+
'glass bowl',
|
1818 |
+
'sun',
|
1819 |
+
'organization',
|
1820 |
+
'lion',
|
1821 |
+
'panel',
|
1822 |
+
'station',
|
1823 |
+
'wallpaper',
|
1824 |
+
'helicopter',
|
1825 |
+
'salt',
|
1826 |
+
'vanity',
|
1827 |
+
'patio',
|
1828 |
+
'lunch',
|
1829 |
+
'street performer',
|
1830 |
+
'mountain range',
|
1831 |
+
'soup',
|
1832 |
+
'bacon',
|
1833 |
+
'power station',
|
1834 |
+
'cantilever bridge',
|
1835 |
+
'hummingbird',
|
1836 |
+
'shirt',
|
1837 |
+
'rope',
|
1838 |
+
'hip',
|
1839 |
+
'chalk',
|
1840 |
+
'pendant',
|
1841 |
+
'choir',
|
1842 |
+
'tv',
|
1843 |
+
'lichen',
|
1844 |
+
'railway bridge',
|
1845 |
+
'art gallery',
|
1846 |
+
'bartender',
|
1847 |
+
'wagon',
|
1848 |
+
'baby elephant',
|
1849 |
+
'accordion',
|
1850 |
+
'horseshoe',
|
1851 |
+
'building site',
|
1852 |
+
'clutch',
|
1853 |
+
'harvest',
|
1854 |
+
'savanna',
|
1855 |
+
'geranium',
|
1856 |
+
'business woman',
|
1857 |
+
'paddock',
|
1858 |
+
'patch',
|
1859 |
+
'beech tree',
|
1860 |
+
'war',
|
1861 |
+
'suburbs',
|
1862 |
+
'hospital bed',
|
1863 |
+
'motorcycle racer',
|
1864 |
+
'moss',
|
1865 |
+
'gravel',
|
1866 |
+
'government agency',
|
1867 |
+
'dollar bill',
|
1868 |
+
'father',
|
1869 |
+
'fjord',
|
1870 |
+
'concert',
|
1871 |
+
'nut',
|
1872 |
+
'wedding photography',
|
1873 |
+
'finish line',
|
1874 |
+
'home plate',
|
1875 |
+
'food',
|
1876 |
+
'nose',
|
1877 |
+
'thumb',
|
1878 |
+
'village',
|
1879 |
+
'dining room table',
|
1880 |
+
'bumper',
|
1881 |
+
'monster',
|
1882 |
+
'blackberry',
|
1883 |
+
'lime',
|
1884 |
+
'conflict',
|
1885 |
+
'gala',
|
1886 |
+
'wallet',
|
1887 |
+
'wrist',
|
1888 |
+
'hug',
|
1889 |
+
'mermaid',
|
1890 |
+
'lava',
|
1891 |
+
'lawyer',
|
1892 |
+
'folk rock artist',
|
1893 |
+
'arena',
|
1894 |
+
'onion',
|
1895 |
+
'toothbrush',
|
1896 |
+
'fashion',
|
1897 |
+
'perfume',
|
1898 |
+
'flip',
|
1899 |
+
'triangle',
|
1900 |
+
'woodland',
|
1901 |
+
'mail',
|
1902 |
+
'grasshopper',
|
1903 |
+
'studio',
|
1904 |
+
'wood floor',
|
1905 |
+
'den',
|
1906 |
+
'racquet',
|
1907 |
+
'cello',
|
1908 |
+
'lemur',
|
1909 |
+
'astronaut',
|
1910 |
+
'glass table',
|
1911 |
+
'blood',
|
1912 |
+
'dvd',
|
1913 |
+
'planter',
|
1914 |
+
'silver',
|
1915 |
+
'leash',
|
1916 |
+
'master bedroom',
|
1917 |
+
'forest',
|
1918 |
+
'batter',
|
1919 |
+
'shoe',
|
1920 |
+
'engraving',
|
1921 |
+
'opening',
|
1922 |
+
'product',
|
1923 |
+
'toe',
|
1924 |
+
'cocktail',
|
1925 |
+
'mallard duck',
|
1926 |
+
'bike ride',
|
1927 |
+
'oasis',
|
1928 |
+
'wedding ring',
|
1929 |
+
'cinematographer',
|
1930 |
+
'holly',
|
1931 |
+
'autograph',
|
1932 |
+
'fence',
|
1933 |
+
'ice cube',
|
1934 |
+
'cove',
|
1935 |
+
'pineapple',
|
1936 |
+
'aurora',
|
1937 |
+
'glass bead',
|
1938 |
+
'produce',
|
1939 |
+
'apartment building',
|
1940 |
+
'cob',
|
1941 |
+
'miniature',
|
1942 |
+
'cockpit',
|
1943 |
+
'flashlight',
|
1944 |
+
'frog',
|
1945 |
+
'sheep',
|
1946 |
+
'groom',
|
1947 |
+
'steel',
|
1948 |
+
'watermelon',
|
1949 |
+
'clip art',
|
1950 |
+
'paper plate',
|
1951 |
+
'ostrich',
|
1952 |
+
'contour',
|
1953 |
+
'mural',
|
1954 |
+
'cub',
|
1955 |
+
'paisley bandanna',
|
1956 |
+
'winery',
|
1957 |
+
'turn',
|
1958 |
+
'handle',
|
1959 |
+
'satellite',
|
1960 |
+
'post',
|
1961 |
+
'pork',
|
1962 |
+
'child',
|
1963 |
+
'asphalt',
|
1964 |
+
'grocery store',
|
1965 |
+
'vulture',
|
1966 |
+
'trolley',
|
1967 |
+
'nightclub',
|
1968 |
+
'brick',
|
1969 |
+
'trailer',
|
1970 |
+
'compass',
|
1971 |
+
'cereal',
|
1972 |
+
'cafe',
|
1973 |
+
'cartoon character',
|
1974 |
+
'sugar',
|
1975 |
+
'fiction book',
|
1976 |
+
'glass floor',
|
1977 |
+
'umpire',
|
1978 |
+
'guitar',
|
1979 |
+
'hamster',
|
1980 |
+
'protester',
|
1981 |
+
'airplane',
|
1982 |
+
'garment',
|
1983 |
+
'blazer',
|
1984 |
+
'railway line',
|
1985 |
+
'wedding',
|
1986 |
+
'shoe box',
|
1987 |
+
'parking lot',
|
1988 |
+
'construction',
|
1989 |
+
'graduation ceremony',
|
1990 |
+
'tram',
|
1991 |
+
'telescope',
|
1992 |
+
'copper',
|
1993 |
+
'pain',
|
1994 |
+
'autumn forest',
|
1995 |
+
'guest house',
|
1996 |
+
'partner',
|
1997 |
+
'crayon',
|
1998 |
+
'dip',
|
1999 |
+
'boot',
|
2000 |
+
'corridor',
|
2001 |
+
'computer keyboard',
|
2002 |
+
'hockey player',
|
2003 |
+
'chicken coop',
|
2004 |
+
'bus station',
|
2005 |
+
'gathering',
|
2006 |
+
'ankle',
|
2007 |
+
'bunk bed',
|
2008 |
+
'wood table',
|
2009 |
+
'football coach',
|
2010 |
+
'monarch',
|
2011 |
+
'pharmacy',
|
2012 |
+
'legging',
|
2013 |
+
'mannequin',
|
2014 |
+
'female',
|
2015 |
+
'train track',
|
2016 |
+
'stack',
|
2017 |
+
'canopy',
|
2018 |
+
'design element',
|
2019 |
+
'grandmother',
|
2020 |
+
'symbol',
|
2021 |
+
'beach hut',
|
2022 |
+
'zucchini',
|
2023 |
+
'bomb',
|
2024 |
+
'businessman',
|
2025 |
+
'skyscraper',
|
2026 |
+
'tongue',
|
2027 |
+
'case',
|
2028 |
+
'sparkle',
|
2029 |
+
'highland',
|
2030 |
+
'ballroom',
|
2031 |
+
'prom',
|
2032 |
+
'estate',
|
2033 |
+
'customer',
|
2034 |
+
'archipelago',
|
2035 |
+
'cheese',
|
2036 |
+
'debate',
|
2037 |
+
'carriage',
|
2038 |
+
'bulldozer',
|
2039 |
+
'pumpkin',
|
2040 |
+
'sitting room',
|
2041 |
+
'gas station',
|
2042 |
+
'wedding reception',
|
2043 |
+
'camp',
|
2044 |
+
'dog bed',
|
2045 |
+
'tower',
|
2046 |
+
'property',
|
2047 |
+
'river bed',
|
2048 |
+
'pop latin artist',
|
2049 |
+
'fridge',
|
2050 |
+
'wine glass',
|
2051 |
+
'coast',
|
2052 |
+
'beer',
|
2053 |
+
'tow truck',
|
2054 |
+
'fire truck',
|
2055 |
+
'mountain bike',
|
2056 |
+
'thigh',
|
2057 |
+
'heron',
|
2058 |
+
'boat ride',
|
2059 |
+
'gondola',
|
2060 |
+
'turquoise',
|
2061 |
+
'lake',
|
2062 |
+
'llama',
|
2063 |
+
'kitty',
|
2064 |
+
'tin',
|
2065 |
+
'waiting room',
|
2066 |
+
'coffee cup',
|
2067 |
+
'socialite',
|
2068 |
+
'guard',
|
2069 |
+
'tap',
|
2070 |
+
'waterway',
|
2071 |
+
'forehead',
|
2072 |
+
'list',
|
2073 |
+
'erosion',
|
2074 |
+
'box',
|
2075 |
+
'sea lion',
|
2076 |
+
'pollen',
|
2077 |
+
'dam',
|
2078 |
+
'wasp',
|
2079 |
+
'salon',
|
2080 |
+
'tennis tournament',
|
2081 |
+
'flower box',
|
2082 |
+
'aquarium',
|
2083 |
+
'rain cloud',
|
2084 |
+
'clothing store',
|
2085 |
+
'lead singer',
|
2086 |
+
'cupcake',
|
2087 |
+
'tortoise',
|
2088 |
+
'lettering',
|
2089 |
+
'sport facility',
|
2090 |
+
'dance',
|
2091 |
+
'dog house',
|
2092 |
+
'nature',
|
2093 |
+
'football',
|
2094 |
+
'rooster',
|
2095 |
+
'footballer',
|
2096 |
+
'railway track',
|
2097 |
+
'crowd',
|
2098 |
+
'fishing rod',
|
2099 |
+
'silhouette',
|
2100 |
+
'wind turbine',
|
2101 |
+
'sari',
|
2102 |
+
'bus window',
|
2103 |
+
'cloud',
|
2104 |
+
'charity',
|
2105 |
+
'medal',
|
2106 |
+
'yoga',
|
2107 |
+
'event',
|
2108 |
+
'veil',
|
2109 |
+
'fashion menswear milan week',
|
2110 |
+
'news',
|
2111 |
+
'knife',
|
2112 |
+
'print',
|
2113 |
+
'screen tv',
|
2114 |
+
'walnut',
|
2115 |
+
'fungus',
|
2116 |
+
'ice cream',
|
2117 |
+
'computer mouse',
|
2118 |
+
'play',
|
2119 |
+
'tribe',
|
2120 |
+
'picture',
|
2121 |
+
'video game',
|
2122 |
+
'business card',
|
2123 |
+
'music festival',
|
2124 |
+
'rack',
|
2125 |
+
'envelope',
|
2126 |
+
'shower',
|
2127 |
+
'dirt road',
|
2128 |
+
'mine',
|
2129 |
+
'oyster',
|
2130 |
+
'monarch butterfly',
|
2131 |
+
'dude',
|
2132 |
+
'fruit salad',
|
2133 |
+
'podium',
|
2134 |
+
'fork',
|
2135 |
+
'lace',
|
2136 |
+
'test match',
|
2137 |
+
'boulder',
|
2138 |
+
'cricket player',
|
2139 |
+
'staircase',
|
2140 |
+
'peninsula',
|
2141 |
+
'shopping',
|
2142 |
+
'popcorn',
|
2143 |
+
'oak',
|
2144 |
+
'market stall',
|
2145 |
+
'pine tree',
|
2146 |
+
'mountaineer',
|
2147 |
+
'student',
|
2148 |
+
'closet',
|
2149 |
+
'hood',
|
2150 |
+
'handstand',
|
2151 |
+
'centerpiece',
|
2152 |
+
'insect',
|
2153 |
+
'patient',
|
2154 |
+
'makeover',
|
2155 |
+
'tennis player',
|
2156 |
+
'sheet',
|
2157 |
+
'park bench',
|
2158 |
+
'apple',
|
2159 |
+
'organism',
|
2160 |
+
'hook',
|
2161 |
+
'turkey',
|
2162 |
+
'tangerine',
|
2163 |
+
'sibling',
|
2164 |
+
'shopping mall',
|
2165 |
+
'bird',
|
2166 |
+
'scarf',
|
2167 |
+
'smoothie',
|
2168 |
+
'net',
|
2169 |
+
'grass',
|
2170 |
+
'napkin',
|
2171 |
+
'ray',
|
2172 |
+
'eyebrow',
|
2173 |
+
'laptop keyboard',
|
2174 |
+
'motorbike',
|
2175 |
+
'woman hand',
|
2176 |
+
'oven',
|
2177 |
+
'book cover',
|
2178 |
+
'easter egg',
|
2179 |
+
'microwave',
|
2180 |
+
'sand',
|
2181 |
+
'snapshot',
|
2182 |
+
'soccer ball',
|
2183 |
+
'makeup',
|
2184 |
+
'knight',
|
2185 |
+
'bowling ball',
|
2186 |
+
'shower curtain',
|
2187 |
+
'flame',
|
2188 |
+
'lightning',
|
2189 |
+
'running',
|
2190 |
+
'power plant',
|
2191 |
+
'crib',
|
2192 |
+
'cartoon',
|
2193 |
+
'moat',
|
2194 |
+
'fashion girl',
|
2195 |
+
'wedding invitation',
|
2196 |
+
'bottle',
|
2197 |
+
'cliff',
|
2198 |
+
'monastery',
|
2199 |
+
'file photo',
|
2200 |
+
'apartment',
|
2201 |
+
'casino',
|
2202 |
+
'cream',
|
2203 |
+
'sweatshirt',
|
2204 |
+
'storm',
|
2205 |
+
'cruise',
|
2206 |
+
'teddy bear',
|
2207 |
+
'shovel',
|
2208 |
+
'wind farm',
|
2209 |
+
'writer',
|
2210 |
+
'dock',
|
2211 |
+
'professional',
|
2212 |
+
'hotel room',
|
2213 |
+
'job',
|
2214 |
+
'monitor',
|
2215 |
+
'donkey',
|
2216 |
+
'pass',
|
2217 |
+
'interview',
|
2218 |
+
'duchess',
|
2219 |
+
'mark',
|
2220 |
+
'plank',
|
2221 |
+
'beard',
|
2222 |
+
'zombie',
|
2223 |
+
'trio',
|
2224 |
+
'channel',
|
2225 |
+
'cricket team',
|
2226 |
+
'windmill',
|
2227 |
+
'vest',
|
2228 |
+
'diagram',
|
2229 |
+
'cable',
|
2230 |
+
'winter scene',
|
2231 |
+
'golden gate bridge',
|
2232 |
+
'buffalo',
|
2233 |
+
'studio portrait',
|
2234 |
+
'pagoda',
|
2235 |
+
'whiskey',
|
2236 |
+
'freight train',
|
2237 |
+
'kite',
|
2238 |
+
'future',
|
2239 |
+
'steam train',
|
2240 |
+
'phone box',
|
2241 |
+
'headset',
|
2242 |
+
'wood',
|
2243 |
+
'snowboarder',
|
2244 |
+
'paper bag',
|
2245 |
+
'slide',
|
2246 |
+
'grapefruit',
|
2247 |
+
'seating',
|
2248 |
+
'morning',
|
2249 |
+
'bronze sculpture',
|
2250 |
+
'theatre actor',
|
2251 |
+
'stump',
|
2252 |
+
'jean',
|
2253 |
+
'landmark',
|
2254 |
+
'jam',
|
2255 |
+
'waist',
|
2256 |
+
'watercolor',
|
2257 |
+
'hammock',
|
2258 |
+
'light fixture',
|
2259 |
+
'ice',
|
2260 |
+
'basin',
|
2261 |
+
'beverage',
|
2262 |
+
'shelter',
|
2263 |
+
'premiere',
|
2264 |
+
'mound',
|
2265 |
+
'ear',
|
2266 |
+
'bronze',
|
2267 |
+
'sunlight',
|
2268 |
+
'street',
|
2269 |
+
'energy',
|
2270 |
+
'barn door',
|
2271 |
+
'hike',
|
2272 |
+
'fleet',
|
2273 |
+
'claw',
|
2274 |
+
'beach',
|
2275 |
+
'pepperoni',
|
2276 |
+
'bin',
|
2277 |
+
'trainer',
|
2278 |
+
'buffet',
|
2279 |
+
'archive',
|
2280 |
+
'toddler',
|
2281 |
+
'referee',
|
2282 |
+
'bay window',
|
2283 |
+
'dove',
|
2284 |
+
'production company',
|
2285 |
+
'evening light',
|
2286 |
+
'gate',
|
2287 |
+
'farm',
|
2288 |
+
'reed',
|
2289 |
+
'fruit stand',
|
2290 |
+
'explorer',
|
2291 |
+
'snow storm',
|
2292 |
+
'throw pillow',
|
2293 |
+
'button',
|
2294 |
+
'display case',
|
2295 |
+
'bookcase',
|
2296 |
+
'lead',
|
2297 |
+
'lipstick',
|
2298 |
+
'basketball court',
|
2299 |
+
'cargo',
|
2300 |
+
'ensemble',
|
2301 |
+
'pope',
|
2302 |
+
'clock tower',
|
2303 |
+
'teen',
|
2304 |
+
'speaker',
|
2305 |
+
'rat',
|
2306 |
+
'laptop',
|
2307 |
+
'ski',
|
2308 |
+
'mess',
|
2309 |
+
'stadium',
|
2310 |
+
'ferry boat',
|
2311 |
+
'bunny',
|
2312 |
+
'waterfront',
|
2313 |
+
'downtown',
|
2314 |
+
'sink',
|
2315 |
+
'press conference',
|
2316 |
+
'dinner',
|
2317 |
+
'condiment',
|
2318 |
+
'thread',
|
2319 |
+
'audience',
|
2320 |
+
'grid',
|
2321 |
+
'car',
|
2322 |
+
'plastic',
|
2323 |
+
'people',
|
2324 |
+
'barbecue',
|
2325 |
+
'pigeon',
|
2326 |
+
'urinal',
|
2327 |
+
'seagull',
|
2328 |
+
'volunteer',
|
2329 |
+
'hockey',
|
2330 |
+
'fir tree',
|
2331 |
+
'pollution',
|
2332 |
+
'trial',
|
2333 |
+
'collar',
|
2334 |
+
'area',
|
2335 |
+
'meeting room',
|
2336 |
+
'circus',
|
2337 |
+
'yogurt',
|
2338 |
+
'orangutan',
|
2339 |
+
'viaduct',
|
2340 |
+
'comedian',
|
2341 |
+
'drone',
|
2342 |
+
'scissor',
|
2343 |
+
'pop rock artist',
|
2344 |
+
'biscuit',
|
2345 |
+
'panda',
|
2346 |
+
'water feature',
|
2347 |
+
'air balloon',
|
2348 |
+
'remote control',
|
2349 |
+
'watercolor painting',
|
2350 |
+
'show',
|
2351 |
+
'walk',
|
2352 |
+
'post office',
|
2353 |
+
'bike path',
|
2354 |
+
'rap gangsta artist',
|
2355 |
+
'microphone',
|
2356 |
+
'crack',
|
2357 |
+
'sunset sky',
|
2358 |
+
'glass',
|
2359 |
+
'tv show',
|
2360 |
+
'cartoon style',
|
2361 |
+
'stripe',
|
2362 |
+
'foyer',
|
2363 |
+
'signal',
|
2364 |
+
'calligraphy',
|
2365 |
+
'bulb',
|
2366 |
+
'gardener',
|
2367 |
+
'coffee bean',
|
2368 |
+
'spider',
|
2369 |
+
'tapestry',
|
2370 |
+
'city skyline',
|
2371 |
+
'necklace',
|
2372 |
+
'kitten',
|
2373 |
+
'traveler',
|
2374 |
+
'veteran',
|
2375 |
+
'frosting',
|
2376 |
+
'fry',
|
2377 |
+
'tennis court',
|
2378 |
+
'tank top',
|
2379 |
+
'butterfly house',
|
2380 |
+
'mist',
|
2381 |
+
'drummer',
|
2382 |
+
'water level',
|
2383 |
+
'scale',
|
2384 |
+
'baseball glove',
|
2385 |
+
'music video performer',
|
2386 |
+
'champagne',
|
2387 |
+
'camping',
|
2388 |
+
'clothing',
|
2389 |
+
'water drop',
|
2390 |
+
'telephone box',
|
2391 |
+
'pen',
|
2392 |
+
'morning mist',
|
2393 |
+
'fire engine',
|
2394 |
+
'porch',
|
2395 |
+
'opening ceremony',
|
2396 |
+
'style',
|
2397 |
+
'palm tree',
|
2398 |
+
'fashion show',
|
2399 |
+
'universe',
|
2400 |
+
'scratch',
|
2401 |
+
'axe',
|
2402 |
+
'ottoman',
|
2403 |
+
'explosion',
|
2404 |
+
'rib',
|
2405 |
+
'boutique',
|
2406 |
+
'game',
|
2407 |
+
'cucumber',
|
2408 |
+
'fruit',
|
2409 |
+
'stone bridge',
|
2410 |
+
'nature reserve',
|
2411 |
+
'track',
|
2412 |
+
'train window',
|
2413 |
+
'punch',
|
2414 |
+
'telephone pole',
|
2415 |
+
'velvet',
|
2416 |
+
'sauce',
|
2417 |
+
'moon',
|
2418 |
+
'contrast',
|
2419 |
+
'flamingo',
|
2420 |
+
'bat',
|
2421 |
+
'vending machine',
|
2422 |
+
'ship',
|
2423 |
+
'equestrian',
|
2424 |
+
'shade',
|
2425 |
+
'comforter',
|
2426 |
+
'pallet',
|
2427 |
+
'sparrow',
|
2428 |
+
'wii',
|
2429 |
+
'glaze',
|
2430 |
+
'grocery',
|
2431 |
+
'steeple',
|
2432 |
+
'soccer player',
|
2433 |
+
'contract',
|
2434 |
+
'advertising',
|
2435 |
+
'runner',
|
2436 |
+
'chimpanzee',
|
2437 |
+
'world',
|
2438 |
+
'seat',
|
2439 |
+
'project',
|
2440 |
+
'chihuahua',
|
2441 |
+
'bubble',
|
2442 |
+
'willow',
|
2443 |
+
'pedestal',
|
2444 |
+
'soul hip hop artist',
|
2445 |
+
'curb',
|
2446 |
+
'drawer',
|
2447 |
+
'leaf',
|
2448 |
+
'banner',
|
2449 |
+
'launch party',
|
2450 |
+
'coach',
|
2451 |
+
'government',
|
2452 |
+
'snowball',
|
2453 |
+
'toy',
|
2454 |
+
'portrait',
|
2455 |
+
'doctor',
|
2456 |
+
'whiteboard',
|
2457 |
+
'electronic',
|
2458 |
+
'tiger',
|
2459 |
+
'graffiti',
|
2460 |
+
'column',
|
2461 |
+
'nightstand',
|
2462 |
+
'whistle',
|
2463 |
+
'maxi dress',
|
2464 |
+
'bench',
|
2465 |
+
'wetsuit',
|
2466 |
+
'bird feeder',
|
2467 |
+
'football game',
|
2468 |
+
'basketball',
|
2469 |
+
'class',
|
2470 |
+
'bathroom door',
|
2471 |
+
'store window',
|
2472 |
+
'text message',
|
2473 |
+
'wreath',
|
2474 |
+
'street view',
|
2475 |
+
'binocular',
|
2476 |
+
'pet',
|
2477 |
+
'facade',
|
2478 |
+
'drought',
|
2479 |
+
'lemon',
|
2480 |
+
'new year',
|
2481 |
+
'night view',
|
2482 |
+
'airplane window',
|
2483 |
+
'specie',
|
2484 |
+
'rule',
|
2485 |
+
'jaw',
|
2486 |
+
'wheat field',
|
2487 |
+
'diet',
|
2488 |
+
'pop artist',
|
2489 |
+
'habitat',
|
2490 |
+
'screenshot',
|
2491 |
+
'scoreboard',
|
2492 |
+
'shore',
|
2493 |
+
'mane',
|
2494 |
+
'quilt',
|
2495 |
+
'ski lift',
|
2496 |
+
'orchid',
|
2497 |
+
'turban',
|
2498 |
+
'christmas',
|
2499 |
+
'airport',
|
2500 |
+
'marina',
|
2501 |
+
'glass door',
|
2502 |
+
'glass bottle',
|
2503 |
+
'restaurant',
|
2504 |
+
'conductor',
|
2505 |
+
'logo',
|
2506 |
+
'sleep',
|
2507 |
+
'tape',
|
2508 |
+
'tomato',
|
2509 |
+
'river bank',
|
2510 |
+
'lilac',
|
2511 |
+
'tooth',
|
2512 |
+
'training',
|
2513 |
+
'pottery',
|
2514 |
+
'shop',
|
2515 |
+
'steam engine',
|
2516 |
+
'mason jar',
|
2517 |
+
'base',
|
2518 |
+
'procession',
|
2519 |
+
'border',
|
2520 |
+
'shoot',
|
2521 |
+
'footprint',
|
2522 |
+
'hotdog',
|
2523 |
+
'bull',
|
2524 |
+
'stocking',
|
2525 |
+
'recreation',
|
2526 |
+
'automobile model',
|
2527 |
+
'design',
|
2528 |
+
'country pop artist',
|
2529 |
+
'river',
|
2530 |
+
'retriever',
|
2531 |
+
'department store',
|
2532 |
+
'auditorium',
|
2533 |
+
'sport car',
|
2534 |
+
'supermarket',
|
2535 |
+
'belt',
|
2536 |
+
'cricket',
|
2537 |
+
'window box',
|
2538 |
+
'dress shirt',
|
2539 |
+
'letter',
|
2540 |
+
'residence',
|
2541 |
+
'megaphone',
|
2542 |
+
'pant',
|
2543 |
+
'wildfire',
|
2544 |
+
'bird nest',
|
2545 |
+
'crab',
|
2546 |
+
'swimsuit',
|
2547 |
+
'candle',
|
2548 |
+
'funeral',
|
2549 |
+
'mill',
|
2550 |
+
'national park',
|
2551 |
+
'plant',
|
2552 |
+
'cop',
|
2553 |
+
'power line',
|
2554 |
+
'perch',
|
2555 |
+
'blue',
|
2556 |
+
'finger',
|
2557 |
+
'ferris wheel',
|
2558 |
+
'globe',
|
2559 |
+
'skateboard',
|
2560 |
+
'helmet',
|
2561 |
+
'movie theater',
|
2562 |
+
'uniform',
|
2563 |
+
'hammer',
|
2564 |
+
'material',
|
2565 |
+
'kid',
|
2566 |
+
'well',
|
2567 |
+
'butterfly',
|
2568 |
+
'sideline',
|
2569 |
+
'fashion fall show',
|
2570 |
+
'planet earth',
|
2571 |
+
'lift',
|
2572 |
+
'male',
|
2573 |
+
'sauna',
|
2574 |
+
'gray',
|
2575 |
+
'flour',
|
2576 |
+
'sand sculpture',
|
2577 |
+
'program',
|
2578 |
+
'cabinet',
|
2579 |
+
'infant',
|
2580 |
+
'wheel',
|
2581 |
+
'aircraft model',
|
2582 |
+
'dough',
|
2583 |
+
'garlic',
|
2584 |
+
'skate',
|
2585 |
+
'arrow',
|
2586 |
+
'wrapping paper',
|
2587 |
+
'ripple',
|
2588 |
+
'lamp',
|
2589 |
+
'iron',
|
2590 |
+
'banknote',
|
2591 |
+
'beaver',
|
2592 |
+
'ferry',
|
2593 |
+
'courtyard',
|
2594 |
+
'bassist',
|
2595 |
+
'countryside',
|
2596 |
+
'steak',
|
2597 |
+
'comfort',
|
2598 |
+
'boxer',
|
2599 |
+
'laundry room',
|
2600 |
+
'campsite',
|
2601 |
+
'brick building',
|
2602 |
+
'golf',
|
2603 |
+
'subway',
|
2604 |
+
'headphone',
|
2605 |
+
'fort',
|
2606 |
+
'handbag',
|
2607 |
+
'drum',
|
2608 |
+
'flood',
|
2609 |
+
'saddle',
|
2610 |
+
'bass',
|
2611 |
+
'labyrinth',
|
2612 |
+
'needle',
|
2613 |
+
'sun ray',
|
2614 |
+
'app',
|
2615 |
+
'menu',
|
2616 |
+
'president',
|
2617 |
+
'cardigan',
|
2618 |
+
'dandelion',
|
2619 |
+
'wetland',
|
2620 |
+
'ice hockey player',
|
2621 |
+
'number',
|
2622 |
+
'city hall',
|
2623 |
+
'fishing',
|
2624 |
+
'portrait session',
|
2625 |
+
'pug',
|
2626 |
+
'key',
|
2627 |
+
'art print',
|
2628 |
+
'minister',
|
2629 |
+
'hurdle',
|
2630 |
+
'emergency',
|
2631 |
+
'painting artist',
|
2632 |
+
'flag pole',
|
2633 |
+
'evening',
|
2634 |
+
'purse',
|
2635 |
+
'recipe',
|
2636 |
+
'golf ball',
|
2637 |
+
'coloring book',
|
2638 |
+
'mountain peak',
|
2639 |
+
'senior',
|
2640 |
+
'holiday',
|
2641 |
+
'bud',
|
2642 |
+
'cousin',
|
2643 |
+
'pantry',
|
2644 |
+
'lap',
|
2645 |
+
'skin',
|
2646 |
+
'flag',
|
2647 |
+
'tissue paper',
|
2648 |
+
'ridge',
|
2649 |
+
'wire fence',
|
2650 |
+
'surfer',
|
2651 |
+
'climber',
|
2652 |
+
'photograph',
|
2653 |
+
'sewing machine',
|
2654 |
+
'cooler',
|
2655 |
+
'actress',
|
2656 |
+
'apple tree',
|
2657 |
+
'cancer',
|
2658 |
+
'starfish',
|
2659 |
+
'automobile make',
|
2660 |
+
'dumbbell',
|
2661 |
+
'brace',
|
2662 |
+
'tunnel',
|
2663 |
+
'window',
|
2664 |
+
'paint artist',
|
2665 |
+
'composition',
|
2666 |
+
'school student',
|
2667 |
+
'condo',
|
2668 |
+
'convertible',
|
2669 |
+
'cushion',
|
2670 |
+
'selfie',
|
2671 |
+
'territory',
|
2672 |
+
'guide',
|
2673 |
+
'tree',
|
2674 |
+
'court',
|
2675 |
+
'shrimp',
|
2676 |
+
'stone house',
|
2677 |
+
'dress',
|
2678 |
+
'eyelash',
|
2679 |
+
'juice',
|
2680 |
+
'broccoli',
|
2681 |
+
'chain',
|
2682 |
+
'tourism',
|
2683 |
+
'mountain top',
|
2684 |
+
'concept car',
|
2685 |
+
'film premiere',
|
2686 |
+
'light bulb',
|
2687 |
+
'cafeteria',
|
2688 |
+
'badge',
|
2689 |
+
'flower bed',
|
2690 |
+
'theater',
|
2691 |
+
'root',
|
2692 |
+
'racecar driver',
|
2693 |
+
'basketball boy game',
|
2694 |
+
'glove',
|
2695 |
+
'skyline',
|
2696 |
+
'wall',
|
2697 |
+
'glacier',
|
2698 |
+
'airport terminal',
|
2699 |
+
'bug',
|
2700 |
+
'trim',
|
2701 |
+
'railway station',
|
2702 |
+
'briefcase',
|
2703 |
+
'flat',
|
2704 |
+
'fountain',
|
2705 |
+
'person',
|
2706 |
+
'lane',
|
2707 |
+
'asparagus',
|
2708 |
+
'art',
|
2709 |
+
'lantern',
|
2710 |
+
'dishwasher',
|
2711 |
+
'director',
|
2712 |
+
'snake',
|
2713 |
+
'lecture',
|
2714 |
+
'game controller',
|
2715 |
+
'tree branch',
|
2716 |
+
'pub',
|
2717 |
+
'bathing suit',
|
2718 |
+
'queue',
|
2719 |
+
'belly',
|
2720 |
+
'poppy',
|
2721 |
+
'bow',
|
2722 |
+
'pitcher',
|
2723 |
+
'ice cream cone',
|
2724 |
+
'cave',
|
2725 |
+
'candy',
|
2726 |
+
'road bridge',
|
2727 |
+
'host',
|
2728 |
+
'traffic jam',
|
2729 |
+
'earring',
|
2730 |
+
'file',
|
2731 |
+
'foot',
|
2732 |
+
'watermark overlay stamp',
|
2733 |
+
'mailbox',
|
2734 |
+
'supercar',
|
2735 |
+
'railing',
|
2736 |
+
'bedroom',
|
2737 |
+
'seafood',
|
2738 |
+
'waffle',
|
2739 |
+
'bronze statue',
|
2740 |
+
'plan',
|
2741 |
+
'flow',
|
2742 |
+
'marble',
|
2743 |
+
'basketball game',
|
2744 |
+
'automobile',
|
2745 |
+
'scene',
|
2746 |
+
'cypress tree',
|
2747 |
+
'soldier',
|
2748 |
+
'skateboarder',
|
2749 |
+
'glass building',
|
2750 |
+
'cherry tree',
|
2751 |
+
'pump',
|
2752 |
+
'grain',
|
2753 |
+
'wildebeest',
|
2754 |
+
'loop',
|
2755 |
+
'frame',
|
2756 |
+
'bathtub',
|
2757 |
+
'saxophone',
|
2758 |
+
'diver',
|
2759 |
+
'stalk',
|
2760 |
+
'lily',
|
2761 |
+
'bead',
|
2762 |
+
'alley',
|
2763 |
+
'flock',
|
2764 |
+
'family room',
|
2765 |
+
'manufacturing',
|
2766 |
+
'pointer',
|
2767 |
+
'worker',
|
2768 |
+
'navy',
|
2769 |
+
'potato',
|
2770 |
+
'teacher',
|
2771 |
+
'photography',
|
2772 |
+
'dolly',
|
2773 |
+
'boardwalk',
|
2774 |
+
'water fountain',
|
2775 |
+
'athlete',
|
2776 |
+
'side dish',
|
2777 |
+
'bay',
|
2778 |
+
'ice hockey',
|
2779 |
+
'phone',
|
2780 |
+
'hero',
|
2781 |
+
'face',
|
2782 |
+
'gold medal',
|
2783 |
+
'blind',
|
2784 |
+
'swamp',
|
2785 |
+
'researcher',
|
2786 |
+
'swim',
|
2787 |
+
'meatball',
|
2788 |
+
'iguana',
|
2789 |
+
'leather jacket',
|
2790 |
+
'jellyfish',
|
2791 |
+
'site',
|
2792 |
+
'smoke',
|
2793 |
+
'traffic signal',
|
2794 |
+
'melon',
|
2795 |
+
'beetle',
|
2796 |
+
'calculator',
|
2797 |
+
'skirt',
|
2798 |
+
'plantation',
|
2799 |
+
'sculptor',
|
2800 |
+
'barrier',
|
2801 |
+
'catcher',
|
2802 |
+
'security guard',
|
2803 |
+
'sketch',
|
2804 |
+
'awning',
|
2805 |
+
'steering wheel',
|
2806 |
+
'mountain view',
|
2807 |
+
'bus stop',
|
2808 |
+
'pool',
|
2809 |
+
'leg',
|
2810 |
+
'spotlight',
|
2811 |
+
'apron',
|
2812 |
+
'mineral',
|
2813 |
+
'inlet',
|
2814 |
+
'sleeve',
|
2815 |
+
'torch',
|
2816 |
+
'emotion',
|
2817 |
+
'march',
|
2818 |
+
'police officer',
|
2819 |
+
'performance',
|
2820 |
+
'lamp post',
|
2821 |
+
'fishing boat',
|
2822 |
+
'summer',
|
2823 |
+
'presentation',
|
2824 |
+
'saucer',
|
2825 |
+
'suitcase',
|
2826 |
+
'supermodel',
|
2827 |
+
'goalkeeper',
|
2828 |
+
'shrub',
|
2829 |
+
'rock artist',
|
2830 |
+
'document',
|
2831 |
+
'beach house',
|
2832 |
+
'man',
|
2833 |
+
'blue artist',
|
2834 |
+
'cigar',
|
2835 |
+
'railroad track',
|
2836 |
+
'gown',
|
2837 |
+
'mosaic',
|
2838 |
+
'bungalow',
|
2839 |
+
'alphabet',
|
2840 |
+
'baseball field',
|
2841 |
+
'shed',
|
2842 |
+
'pedestrian',
|
2843 |
+
'rail',
|
2844 |
+
'soap',
|
2845 |
+
'kitchen counter',
|
2846 |
+
'dessert',
|
2847 |
+
'dunk',
|
2848 |
+
'blossom',
|
2849 |
+
'conversation',
|
2850 |
+
'fruit market',
|
2851 |
+
'glass jar',
|
2852 |
+
'military',
|
2853 |
+
'beer bottle',
|
2854 |
+
'photographer',
|
2855 |
+
'tennis racket',
|
2856 |
+
'competition',
|
2857 |
+
'escalator',
|
2858 |
+
'bell tower',
|
2859 |
+
'stilt',
|
2860 |
+
'ballerina',
|
2861 |
+
'television',
|
2862 |
+
'feather',
|
2863 |
+
'fence post',
|
2864 |
+
'rear',
|
2865 |
+
'dahlia',
|
2866 |
+
'red carpet',
|
2867 |
+
'tub',
|
2868 |
+
'hole',
|
2869 |
+
'fortress',
|
2870 |
+
'pack',
|
2871 |
+
'telephone',
|
2872 |
+
'cardboard',
|
2873 |
+
'city park',
|
2874 |
+
'platform',
|
2875 |
+
'college student',
|
2876 |
+
'arch bridge',
|
2877 |
+
'wind',
|
2878 |
+
'blender',
|
2879 |
+
'bloom',
|
2880 |
+
'ice rink',
|
2881 |
+
'birthday',
|
2882 |
+
'raven',
|
2883 |
+
'fairy',
|
2884 |
+
'embankment',
|
2885 |
+
'hall',
|
2886 |
+
'flower shop',
|
2887 |
+
'suburb',
|
2888 |
+
'barrel',
|
2889 |
+
'biker',
|
2890 |
+
'steam',
|
2891 |
+
'dragonfly',
|
2892 |
+
'formation',
|
2893 |
+
'electricity',
|
2894 |
+
'business people',
|
2895 |
+
'symmetry',
|
2896 |
+
'walkway',
|
2897 |
+
'fisherman',
|
2898 |
+
'gas mask',
|
2899 |
+
'loch',
|
2900 |
+
'youth',
|
2901 |
+
'hanger',
|
2902 |
+
'dot',
|
2903 |
+
'fish',
|
2904 |
+
'street market',
|
2905 |
+
'animation film',
|
2906 |
+
'crime fiction film',
|
2907 |
+
'boar',
|
2908 |
+
'emblem',
|
2909 |
+
'halloween costume',
|
2910 |
+
'kangaroo',
|
2911 |
+
'couple',
|
2912 |
+
'spoon',
|
2913 |
+
'squirrel',
|
2914 |
+
'neon sign',
|
2915 |
+
'sky',
|
2916 |
+
'office desk',
|
2917 |
+
'beauty salon',
|
2918 |
+
'breakwater',
|
2919 |
+
'fashion look',
|
2920 |
+
'toaster',
|
2921 |
+
'author',
|
2922 |
+
'news conference',
|
2923 |
+
'outdoor',
|
2924 |
+
'canoe',
|
2925 |
+
'dragon',
|
2926 |
+
'tool',
|
2927 |
+
'shopping centre',
|
2928 |
+
'ladybug',
|
2929 |
+
'swimming pool',
|
2930 |
+
'landscaping',
|
2931 |
+
'ski pole',
|
2932 |
+
'red',
|
2933 |
+
'truck',
|
2934 |
+
'fly',
|
2935 |
+
'temple',
|
2936 |
+
'level',
|
2937 |
+
'sunday',
|
2938 |
+
'railroad bridge',
|
2939 |
+
'car mirror',
|
2940 |
+
'lawn mower',
|
2941 |
+
'flute',
|
2942 |
+
'aircraft carrier',
|
2943 |
+
'fashion menswear london week',
|
2944 |
+
'sunshine',
|
2945 |
+
'tile floor',
|
2946 |
+
'skull',
|
2947 |
+
'fossil',
|
2948 |
+
'flower arrangement',
|
2949 |
+
'diaper',
|
2950 |
+
'sea turtle',
|
2951 |
+
'cherry blossom',
|
2952 |
+
'fireman',
|
2953 |
+
'shack',
|
2954 |
+
'lens',
|
2955 |
+
'waiter',
|
2956 |
+
'animal',
|
2957 |
+
'basement',
|
2958 |
+
'snow',
|
2959 |
+
'autumn park',
|
2960 |
+
'glass box',
|
2961 |
+
'kick',
|
2962 |
+
'head',
|
2963 |
+
'anniversary',
|
2964 |
+
'vine',
|
2965 |
+
'back',
|
2966 |
+
'paper lantern',
|
2967 |
+
'fish tank',
|
2968 |
+
'cellphone',
|
2969 |
+
'silk',
|
2970 |
+
'coral',
|
2971 |
+
'notebook',
|
2972 |
+
'photo',
|
2973 |
+
'gazebo',
|
2974 |
+
'ketchup',
|
2975 |
+
'driver',
|
2976 |
+
'farmer',
|
2977 |
+
'bonfire',
|
2978 |
+
'chestnut',
|
2979 |
+
'photoshoot',
|
2980 |
+
'football field',
|
2981 |
+
'olive tree',
|
2982 |
+
'pheasant',
|
2983 |
+
'sandal',
|
2984 |
+
'toilet',
|
2985 |
+
'fireplace',
|
2986 |
+
'music',
|
2987 |
+
'deity',
|
2988 |
+
'fish market',
|
2989 |
+
'fig',
|
2990 |
+
'bell',
|
2991 |
+
'neck',
|
2992 |
+
'grave',
|
2993 |
+
'villa',
|
2994 |
+
'cyclist',
|
2995 |
+
'crate',
|
2996 |
+
'grey',
|
2997 |
+
'asphalt road',
|
2998 |
+
'soccer',
|
2999 |
+
'hostel',
|
3000 |
+
'municipality',
|
3001 |
+
'courthouse',
|
3002 |
+
'roof',
|
3003 |
+
'end table',
|
3004 |
+
'pot',
|
3005 |
+
'sedan',
|
3006 |
+
'structure',
|
3007 |
+
'folk artist',
|
3008 |
+
'sport',
|
3009 |
+
'sport team',
|
3010 |
+
'protest',
|
3011 |
+
'syringe',
|
3012 |
+
'fashion designer',
|
3013 |
+
'jersey',
|
3014 |
+
'heart shape',
|
3015 |
+
'kayak',
|
3016 |
+
'stare',
|
3017 |
+
'sit with',
|
3018 |
+
'direct',
|
3019 |
+
'read',
|
3020 |
+
'photograph',
|
3021 |
+
'spin',
|
3022 |
+
'teach',
|
3023 |
+
'laugh',
|
3024 |
+
'carve',
|
3025 |
+
'grow on',
|
3026 |
+
'warm',
|
3027 |
+
'watch',
|
3028 |
+
'stretch',
|
3029 |
+
'smell',
|
3030 |
+
'decorate',
|
3031 |
+
'shine',
|
3032 |
+
'light',
|
3033 |
+
'dance',
|
3034 |
+
'send',
|
3035 |
+
'park',
|
3036 |
+
'chase',
|
3037 |
+
'collect',
|
3038 |
+
'lead',
|
3039 |
+
'kiss',
|
3040 |
+
'lead to',
|
3041 |
+
'lick',
|
3042 |
+
'smile',
|
3043 |
+
'cheer',
|
3044 |
+
'sit',
|
3045 |
+
'point',
|
3046 |
+
'block',
|
3047 |
+
'rock',
|
3048 |
+
'drop',
|
3049 |
+
'cut',
|
3050 |
+
'ski',
|
3051 |
+
'wrap',
|
3052 |
+
'lose',
|
3053 |
+
'serve',
|
3054 |
+
'provide',
|
3055 |
+
'sleep',
|
3056 |
+
'dress',
|
3057 |
+
'embrace',
|
3058 |
+
'burn',
|
3059 |
+
'pack',
|
3060 |
+
'stir',
|
3061 |
+
'create',
|
3062 |
+
'touch',
|
3063 |
+
'wash',
|
3064 |
+
'stick',
|
3065 |
+
'reveal',
|
3066 |
+
'shop',
|
3067 |
+
'train',
|
3068 |
+
'paint',
|
3069 |
+
'groom',
|
3070 |
+
'hunt',
|
3071 |
+
'bloom',
|
3072 |
+
'play',
|
3073 |
+
'pay',
|
3074 |
+
'brush',
|
3075 |
+
'shoot',
|
3076 |
+
'hold',
|
3077 |
+
'picture',
|
3078 |
+
'carry',
|
3079 |
+
'sip',
|
3080 |
+
'contain',
|
3081 |
+
'turn',
|
3082 |
+
'pour',
|
3083 |
+
'pitch',
|
3084 |
+
'give',
|
3085 |
+
'add',
|
3086 |
+
'blow',
|
3087 |
+
'look in',
|
3088 |
+
'show',
|
3089 |
+
'walk',
|
3090 |
+
'illuminate',
|
3091 |
+
'kneel',
|
3092 |
+
'cover',
|
3093 |
+
'drag',
|
3094 |
+
'post',
|
3095 |
+
'present',
|
3096 |
+
'fit',
|
3097 |
+
'operate',
|
3098 |
+
'fish',
|
3099 |
+
'race',
|
3100 |
+
'write',
|
3101 |
+
'deliver',
|
3102 |
+
'peel',
|
3103 |
+
'push',
|
3104 |
+
'run',
|
3105 |
+
'sit around',
|
3106 |
+
'buy',
|
3107 |
+
'jump',
|
3108 |
+
'walk on',
|
3109 |
+
'attend',
|
3110 |
+
'clean',
|
3111 |
+
'sell',
|
3112 |
+
'ride on',
|
3113 |
+
'mount',
|
3114 |
+
'host',
|
3115 |
+
'dry',
|
3116 |
+
'plant',
|
3117 |
+
'sing',
|
3118 |
+
'row',
|
3119 |
+
'shake',
|
3120 |
+
'perch',
|
3121 |
+
'ride',
|
3122 |
+
'fight',
|
3123 |
+
'skateboard',
|
3124 |
+
'live',
|
3125 |
+
'call',
|
3126 |
+
'surround',
|
3127 |
+
'practice',
|
3128 |
+
'play on',
|
3129 |
+
'work on',
|
3130 |
+
'step',
|
3131 |
+
'relax',
|
3132 |
+
'hit',
|
3133 |
+
'fall in',
|
3134 |
+
'flow',
|
3135 |
+
'greet',
|
3136 |
+
'launch',
|
3137 |
+
'wear',
|
3138 |
+
'hang on',
|
3139 |
+
'drive',
|
3140 |
+
'sit in',
|
3141 |
+
'break',
|
3142 |
+
'learn',
|
3143 |
+
'fly',
|
3144 |
+
'connect',
|
3145 |
+
'display',
|
3146 |
+
'locate',
|
3147 |
+
'compete',
|
3148 |
+
'go for',
|
3149 |
+
'sail',
|
3150 |
+
'lift',
|
3151 |
+
'toast',
|
3152 |
+
'help',
|
3153 |
+
'run on',
|
3154 |
+
'reflect',
|
3155 |
+
'pose',
|
3156 |
+
'scratch',
|
3157 |
+
'frame',
|
3158 |
+
'dribble',
|
3159 |
+
'herd',
|
3160 |
+
'enter',
|
3161 |
+
'exit',
|
3162 |
+
'place',
|
3163 |
+
'inspect',
|
3164 |
+
'build',
|
3165 |
+
'pick',
|
3166 |
+
'fill',
|
3167 |
+
'grind',
|
3168 |
+
'skate',
|
3169 |
+
'offer',
|
3170 |
+
'float',
|
3171 |
+
'sit by',
|
3172 |
+
'stand',
|
3173 |
+
'release',
|
3174 |
+
'rest',
|
3175 |
+
'singe',
|
3176 |
+
'climb',
|
3177 |
+
'tie',
|
3178 |
+
'mark',
|
3179 |
+
'lay',
|
3180 |
+
'stand around',
|
3181 |
+
'capture',
|
3182 |
+
'set',
|
3183 |
+
'land',
|
3184 |
+
'swinge',
|
3185 |
+
'run in',
|
3186 |
+
'kick',
|
3187 |
+
'lean',
|
3188 |
+
'head',
|
3189 |
+
'sign',
|
3190 |
+
'approach',
|
3191 |
+
'swim',
|
3192 |
+
'close',
|
3193 |
+
'crash',
|
3194 |
+
'control',
|
3195 |
+
'fall',
|
3196 |
+
'remove',
|
3197 |
+
'repair',
|
3198 |
+
'open',
|
3199 |
+
'appear',
|
3200 |
+
'travel',
|
3201 |
+
'load',
|
3202 |
+
'miss',
|
3203 |
+
'check',
|
3204 |
+
'surf',
|
3205 |
+
'moor',
|
3206 |
+
'smoke',
|
3207 |
+
'drink',
|
3208 |
+
'board',
|
3209 |
+
'seat',
|
3210 |
+
'feed',
|
3211 |
+
'rise',
|
3212 |
+
'sit on',
|
3213 |
+
'swing',
|
3214 |
+
'grow',
|
3215 |
+
'strike',
|
3216 |
+
'date',
|
3217 |
+
'slide',
|
3218 |
+
'share',
|
3219 |
+
'graze',
|
3220 |
+
'jump in',
|
3221 |
+
'lie',
|
3222 |
+
'extrude',
|
3223 |
+
'roll',
|
3224 |
+
'move',
|
3225 |
+
'gather',
|
3226 |
+
'eat',
|
3227 |
+
'pull',
|
3228 |
+
'run through',
|
3229 |
+
'squeeze',
|
3230 |
+
'lay on',
|
3231 |
+
'draw',
|
3232 |
+
'play with',
|
3233 |
+
'wave',
|
3234 |
+
'assemble',
|
3235 |
+
'perform',
|
3236 |
+
'march',
|
3237 |
+
'score',
|
3238 |
+
'attach',
|
3239 |
+
'adjust',
|
3240 |
+
'hang',
|
3241 |
+
'hug',
|
3242 |
+
'sleep on',
|
3243 |
+
'throw',
|
3244 |
+
'live in',
|
3245 |
+
'talk',
|
3246 |
+
'pet',
|
3247 |
+
'work',
|
3248 |
+
'run with',
|
3249 |
+
'see',
|
3250 |
+
'flip',
|
3251 |
+
'catch',
|
3252 |
+
'cook',
|
3253 |
+
'receive',
|
3254 |
+
'celebrate',
|
3255 |
+
'look',
|
3256 |
+
'classic',
|
3257 |
+
'bridal',
|
3258 |
+
'indoor',
|
3259 |
+
'industrial',
|
3260 |
+
'teenage',
|
3261 |
+
'mini',
|
3262 |
+
'grassy',
|
3263 |
+
'aged',
|
3264 |
+
'long',
|
3265 |
+
'warm',
|
3266 |
+
'light',
|
3267 |
+
'handsome',
|
3268 |
+
'happy',
|
3269 |
+
'three',
|
3270 |
+
'pregnant',
|
3271 |
+
'circular',
|
3272 |
+
'urban',
|
3273 |
+
'silver',
|
3274 |
+
'ceramic',
|
3275 |
+
'3d',
|
3276 |
+
'green',
|
3277 |
+
'blonde',
|
3278 |
+
'golden',
|
3279 |
+
'dark',
|
3280 |
+
'tropical',
|
3281 |
+
'ripe',
|
3282 |
+
'deep',
|
3283 |
+
'fat',
|
3284 |
+
'musical',
|
3285 |
+
'giant',
|
3286 |
+
'medical',
|
3287 |
+
'medieval',
|
3288 |
+
'bare',
|
3289 |
+
'stunning',
|
3290 |
+
'bold',
|
3291 |
+
'geographical',
|
3292 |
+
'huge',
|
3293 |
+
'plastic',
|
3294 |
+
'foggy',
|
3295 |
+
'stormy',
|
3296 |
+
'gothic',
|
3297 |
+
'biological',
|
3298 |
+
'empty',
|
3299 |
+
'clear',
|
3300 |
+
'antique',
|
3301 |
+
'pink',
|
3302 |
+
'steep',
|
3303 |
+
'brown',
|
3304 |
+
'striped',
|
3305 |
+
'aerial',
|
3306 |
+
'rainy',
|
3307 |
+
'cool',
|
3308 |
+
'flying',
|
3309 |
+
'commercial',
|
3310 |
+
'purple',
|
3311 |
+
'trendy',
|
3312 |
+
'blank',
|
3313 |
+
'haired',
|
3314 |
+
'dead',
|
3315 |
+
'wooden',
|
3316 |
+
'flat',
|
3317 |
+
'high',
|
3318 |
+
'beige',
|
3319 |
+
'panoramic',
|
3320 |
+
'angry',
|
3321 |
+
'dozen',
|
3322 |
+
'rural',
|
3323 |
+
'solar',
|
3324 |
+
'big',
|
3325 |
+
'small',
|
3326 |
+
'stained',
|
3327 |
+
'thick',
|
3328 |
+
'many',
|
3329 |
+
'fresh',
|
3330 |
+
'clean',
|
3331 |
+
'strong',
|
3332 |
+
'abstract',
|
3333 |
+
'crowded',
|
3334 |
+
'retro',
|
3335 |
+
'dry',
|
3336 |
+
'gorgeous',
|
3337 |
+
'martial',
|
3338 |
+
'modern',
|
3339 |
+
'blue',
|
3340 |
+
'cloudy',
|
3341 |
+
'low',
|
3342 |
+
'four',
|
3343 |
+
'outdoor',
|
3344 |
+
'single',
|
3345 |
+
'much',
|
3346 |
+
'beautiful',
|
3347 |
+
'snowy',
|
3348 |
+
'pretty',
|
3349 |
+
'new',
|
3350 |
+
'short',
|
3351 |
+
'sunny',
|
3352 |
+
'closed',
|
3353 |
+
'rocky',
|
3354 |
+
'red',
|
3355 |
+
'two',
|
3356 |
+
'double',
|
3357 |
+
'male',
|
3358 |
+
'gray',
|
3359 |
+
'five',
|
3360 |
+
'colorful',
|
3361 |
+
'automotive',
|
3362 |
+
'various',
|
3363 |
+
'one',
|
3364 |
+
'old',
|
3365 |
+
'rusty',
|
3366 |
+
'tall',
|
3367 |
+
'wild',
|
3368 |
+
'narrow',
|
3369 |
+
'natural',
|
3370 |
+
'several',
|
3371 |
+
'frozen',
|
3372 |
+
'textured',
|
3373 |
+
'lush',
|
3374 |
+
'young',
|
3375 |
+
'hot',
|
3376 |
+
'mixed',
|
3377 |
+
'white',
|
3378 |
+
'float',
|
3379 |
+
'quiet',
|
3380 |
+
'round',
|
3381 |
+
'bright',
|
3382 |
+
'religious',
|
3383 |
+
'female',
|
3384 |
+
'historical',
|
3385 |
+
'shiny',
|
3386 |
+
'traditional',
|
3387 |
+
'tourist',
|
3388 |
+
'yellow',
|
3389 |
+
'bald',
|
3390 |
+
'coastal',
|
3391 |
+
'lovely',
|
3392 |
+
'little',
|
3393 |
+
'broken',
|
3394 |
+
'romantic',
|
3395 |
+
'wide',
|
3396 |
+
'royal',
|
3397 |
+
'rich',
|
3398 |
+
'open',
|
3399 |
+
'cute',
|
3400 |
+
'ancient',
|
3401 |
+
'cold',
|
3402 |
+
'political',
|
3403 |
+
'elderly',
|
3404 |
+
'gold',
|
3405 |
+
'full',
|
3406 |
+
'rustic',
|
3407 |
+
'metallic',
|
3408 |
+
'floral',
|
3409 |
+
'sad',
|
3410 |
+
'wet',
|
3411 |
+
'fancy',
|
3412 |
+
'senior',
|
3413 |
+
'tiny',
|
3414 |
+
'stylish',
|
3415 |
+
'large',
|
3416 |
+
'frosty',
|
3417 |
+
'orange',
|
3418 |
+
'transparent',
|
3419 |
+
'electronic',
|
3420 |
+
'shallow',
|
3421 |
+
'scared',
|
3422 |
+
'armed',
|
3423 |
+
'dirty',
|
3424 |
+
'historic',
|
3425 |
+
'black',
|
3426 |
+
'few',
|
3427 |
+
'windy',
|
3428 |
+
'some',
|
3429 |
+
'square',
|
3430 |
+
'ornamental',
|
3431 |
+
'sandy',
|
3432 |
+
'thin']
|
3433 |
+
|
3434 |
+
|
3435 |
+
tra_array = np.array(tra_array)
|
3436 |
+
|
3437 |
+
|
gradio_demo.ipynb
ADDED
@@ -0,0 +1,324 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "35d8939e-909d-45d8-bcf9-0ff1dccacfdf",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stderr",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"/opt/conda/lib/python3.7/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
14 |
+
" from .autonotebook import tqdm as notebook_tqdm\n",
|
15 |
+
"Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertModel: ['bert.encoder.layer.2.attention.self.key.bias', 'cls.seq_relationship.weight', 'bert.encoder.layer.5.intermediate.dense.weight', 'cls.predictions.transform.LayerNorm.weight', 'bert.encoder.layer.7.output.dense.weight', 'bert.encoder.layer.10.output.LayerNorm.bias', 'bert.encoder.layer.2.intermediate.dense.bias', 'bert.encoder.layer.6.attention.self.value.weight', 'bert.encoder.layer.5.attention.self.query.bias', 'bert.encoder.layer.8.intermediate.dense.bias', 'bert.encoder.layer.4.output.dense.bias', 'bert.encoder.layer.8.attention.output.dense.weight', 'bert.encoder.layer.8.attention.self.query.bias', 'bert.encoder.layer.4.attention.output.dense.weight', 'bert.encoder.layer.7.intermediate.dense.weight', 'bert.encoder.layer.5.attention.output.LayerNorm.bias', 'bert.encoder.layer.8.output.LayerNorm.bias', 'bert.encoder.layer.2.output.LayerNorm.bias', 'bert.encoder.layer.3.attention.self.value.weight', 'bert.encoder.layer.2.intermediate.dense.weight', 'bert.encoder.layer.5.attention.output.dense.bias', 'bert.encoder.layer.11.intermediate.dense.weight', 'cls.predictions.transform.dense.weight', 'bert.encoder.layer.4.attention.self.key.bias', 'bert.encoder.layer.2.attention.output.LayerNorm.bias', 'bert.encoder.layer.7.output.LayerNorm.bias', 'bert.encoder.layer.5.intermediate.dense.bias', 'bert.encoder.layer.10.output.dense.weight', 'bert.encoder.layer.10.attention.output.LayerNorm.bias', 'bert.encoder.layer.9.intermediate.dense.weight', 'bert.encoder.layer.3.attention.self.query.bias', 'bert.encoder.layer.11.attention.self.query.bias', 'bert.encoder.layer.7.attention.self.value.bias', 'bert.encoder.layer.6.output.dense.bias', 'bert.encoder.layer.6.attention.output.LayerNorm.bias', 'bert.encoder.layer.4.attention.output.LayerNorm.weight', 'cls.predictions.bias', 'bert.encoder.layer.10.attention.output.dense.weight', 'bert.encoder.layer.8.attention.self.value.weight', 'cls.predictions.transform.dense.bias', 'bert.encoder.layer.11.attention.self.query.weight', 'bert.encoder.layer.8.output.LayerNorm.weight', 'bert.encoder.layer.11.attention.self.value.weight', 'bert.encoder.layer.2.attention.self.key.weight', 'bert.encoder.layer.3.attention.output.LayerNorm.weight', 'bert.encoder.layer.8.attention.output.LayerNorm.weight', 'bert.encoder.layer.8.attention.output.LayerNorm.bias', 'bert.encoder.layer.2.output.dense.weight', 'bert.encoder.layer.3.attention.output.dense.bias', 'bert.encoder.layer.11.attention.output.dense.weight', 'bert.encoder.layer.10.attention.self.value.weight', 'bert.encoder.layer.7.attention.output.dense.bias', 'bert.encoder.layer.11.output.dense.bias', 'bert.pooler.dense.bias', 'bert.encoder.layer.11.attention.self.value.bias', 'bert.encoder.layer.6.attention.self.query.bias', 'bert.encoder.layer.6.output.dense.weight', 'bert.encoder.layer.9.output.LayerNorm.bias', 'bert.encoder.layer.4.output.LayerNorm.weight', 'bert.encoder.layer.9.output.LayerNorm.weight', 'bert.encoder.layer.9.intermediate.dense.bias', 'cls.predictions.decoder.weight', 'bert.encoder.layer.4.attention.output.dense.bias', 'bert.encoder.layer.4.attention.self.value.weight', 'bert.encoder.layer.7.output.LayerNorm.weight', 'bert.encoder.layer.11.attention.self.key.bias', 'bert.encoder.layer.6.attention.output.dense.weight', 'bert.encoder.layer.7.attention.self.key.weight', 'bert.encoder.layer.6.attention.output.dense.bias', 'bert.encoder.layer.10.attention.self.value.bias', 'cls.seq_relationship.bias', 'bert.encoder.layer.3.attention.self.key.weight', 'bert.encoder.layer.10.attention.self.key.bias', 'bert.encoder.layer.9.attention.output.dense.bias', 'bert.encoder.layer.4.attention.output.LayerNorm.bias', 'bert.encoder.layer.7.attention.self.key.bias', 'bert.encoder.layer.4.attention.self.query.weight', 'bert.encoder.layer.4.intermediate.dense.weight', 'bert.encoder.layer.4.attention.self.query.bias', 'bert.encoder.layer.6.output.LayerNorm.weight', 'bert.encoder.layer.3.attention.output.dense.weight', 'bert.encoder.layer.3.intermediate.dense.weight', 'bert.encoder.layer.3.intermediate.dense.bias', 'bert.encoder.layer.4.attention.self.value.bias', 'bert.encoder.layer.9.output.dense.weight', 'bert.pooler.dense.weight', 'bert.encoder.layer.11.attention.output.LayerNorm.bias', 'bert.encoder.layer.9.attention.self.query.weight', 'bert.encoder.layer.5.attention.output.dense.weight', 'bert.encoder.layer.10.attention.self.key.weight', 'bert.encoder.layer.11.output.LayerNorm.weight', 'bert.encoder.layer.9.attention.self.query.bias', 'bert.encoder.layer.6.attention.self.value.bias', 'bert.encoder.layer.8.attention.self.value.bias', 'bert.encoder.layer.7.intermediate.dense.bias', 'bert.encoder.layer.10.output.dense.bias', 'bert.encoder.layer.5.output.LayerNorm.weight', 'bert.encoder.layer.8.attention.output.dense.bias', 'bert.encoder.layer.10.intermediate.dense.bias', 'bert.encoder.layer.7.output.dense.bias', 'bert.encoder.layer.7.attention.output.LayerNorm.weight', 'bert.encoder.layer.6.attention.self.query.weight', 'bert.encoder.layer.6.attention.self.key.bias', 'bert.encoder.layer.3.attention.self.query.weight', 'bert.encoder.layer.11.output.dense.weight', 'bert.encoder.layer.9.attention.self.key.bias', 'bert.encoder.layer.2.attention.output.dense.bias', 'bert.encoder.layer.9.attention.output.dense.weight', 'bert.encoder.layer.2.attention.output.LayerNorm.weight', 'bert.encoder.layer.5.attention.output.LayerNorm.weight', 'bert.encoder.layer.11.attention.self.key.weight', 'bert.encoder.layer.4.output.dense.weight', 'bert.encoder.layer.3.attention.self.key.bias', 'bert.encoder.layer.5.output.dense.bias', 'bert.encoder.layer.3.attention.self.value.bias', 'bert.encoder.layer.9.attention.self.key.weight', 'bert.encoder.layer.3.attention.output.LayerNorm.bias', 'bert.encoder.layer.4.intermediate.dense.bias', 'bert.encoder.layer.3.output.LayerNorm.weight', 'bert.encoder.layer.8.attention.self.query.weight', 'bert.encoder.layer.2.output.LayerNorm.weight', 'bert.encoder.layer.10.intermediate.dense.weight', 'bert.encoder.layer.4.output.LayerNorm.bias', 'bert.encoder.layer.10.attention.self.query.bias', 'bert.encoder.layer.11.attention.output.LayerNorm.weight', 'cls.predictions.transform.LayerNorm.bias', 'bert.encoder.layer.2.attention.output.dense.weight', 'bert.encoder.layer.6.intermediate.dense.bias', 'bert.encoder.layer.7.attention.output.LayerNorm.bias', 'bert.encoder.layer.2.output.dense.bias', 'bert.encoder.layer.5.attention.self.key.bias', 'bert.encoder.layer.9.output.dense.bias', 'bert.encoder.layer.2.attention.self.query.weight', 'bert.encoder.layer.5.output.dense.weight', 'bert.encoder.layer.5.attention.self.value.weight', 'bert.encoder.layer.3.output.LayerNorm.bias', 'bert.encoder.layer.11.output.LayerNorm.bias', 'bert.encoder.layer.7.attention.self.query.bias', 'bert.encoder.layer.6.output.LayerNorm.bias', 'bert.encoder.layer.9.attention.output.LayerNorm.bias', 'bert.encoder.layer.3.output.dense.weight', 'bert.encoder.layer.7.attention.self.value.weight', 'bert.encoder.layer.8.output.dense.bias', 'bert.encoder.layer.5.attention.self.query.weight', 'bert.encoder.layer.5.output.LayerNorm.bias', 'bert.encoder.layer.2.attention.self.value.weight', 'bert.encoder.layer.5.attention.self.key.weight', 'bert.encoder.layer.6.attention.self.key.weight', 'bert.encoder.layer.11.intermediate.dense.bias', 'bert.encoder.layer.6.intermediate.dense.weight', 'bert.encoder.layer.10.attention.self.query.weight', 'bert.encoder.layer.10.output.LayerNorm.weight', 'bert.encoder.layer.3.output.dense.bias', 'bert.encoder.layer.6.attention.output.LayerNorm.weight', 'bert.encoder.layer.10.attention.output.dense.bias', 'bert.encoder.layer.9.attention.output.LayerNorm.weight', 'bert.encoder.layer.11.attention.output.dense.bias', 'bert.encoder.layer.4.attention.self.key.weight', 'bert.embeddings.token_type_embeddings.weight', 'bert.encoder.layer.7.attention.self.query.weight', 'bert.encoder.layer.8.output.dense.weight', 'bert.encoder.layer.5.attention.self.value.bias', 'bert.encoder.layer.2.attention.self.value.bias', 'bert.encoder.layer.9.attention.self.value.bias', 'bert.encoder.layer.10.attention.output.LayerNorm.weight', 'bert.encoder.layer.2.attention.self.query.bias', 'bert.encoder.layer.7.attention.output.dense.weight', 'bert.encoder.layer.8.attention.self.key.bias', 'bert.encoder.layer.8.intermediate.dense.weight', 'bert.encoder.layer.8.attention.self.key.weight', 'bert.encoder.layer.9.attention.self.value.weight']\n",
|
16 |
+
"- This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
17 |
+
"- This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
18 |
+
"Some weights of BertModel were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['bert.encoder.layer.0.crossattention.output.dense.bias', 'bert.encoder.layer.0.crossattention.self.value.bias', 'bert.encoder.layer.0.crossattention.self.query.bias', 'bert.encoder.layer.0.crossattention.self.value.weight', 'bert.encoder.layer.1.crossattention.self.query.weight', 'bert.encoder.layer.1.crossattention.output.dense.weight', 'bert.encoder.layer.1.crossattention.self.value.weight', 'bert.encoder.layer.1.crossattention.output.LayerNorm.weight', 'bert.encoder.layer.0.crossattention.output.LayerNorm.weight', 'bert.encoder.layer.1.crossattention.self.key.weight', 'bert.encoder.layer.1.crossattention.output.dense.bias', 'bert.encoder.layer.0.crossattention.self.key.bias', 'bert.encoder.layer.1.crossattention.self.key.bias', 'bert.encoder.layer.1.crossattention.self.query.bias', 'bert.encoder.layer.1.crossattention.self.value.bias', 'bert.encoder.layer.0.crossattention.self.query.weight', 'bert.encoder.layer.0.crossattention.output.LayerNorm.bias', 'bert.encoder.layer.0.crossattention.self.key.weight', 'bert.encoder.layer.1.crossattention.output.LayerNorm.bias', 'bert.encoder.layer.0.crossattention.output.dense.weight']\n",
|
19 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
20 |
+
]
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"name": "stdout",
|
24 |
+
"output_type": "stream",
|
25 |
+
"text": [
|
26 |
+
"/encoder/layer/0/crossattention/self/query is tied\n",
|
27 |
+
"/encoder/layer/0/crossattention/self/key is tied\n",
|
28 |
+
"/encoder/layer/0/crossattention/self/value is tied\n",
|
29 |
+
"/encoder/layer/0/crossattention/output/dense is tied\n",
|
30 |
+
"/encoder/layer/0/crossattention/output/LayerNorm is tied\n",
|
31 |
+
"/encoder/layer/0/intermediate/dense is tied\n",
|
32 |
+
"/encoder/layer/0/output/dense is tied\n",
|
33 |
+
"/encoder/layer/0/output/LayerNorm is tied\n",
|
34 |
+
"/encoder/layer/1/crossattention/self/query is tied\n",
|
35 |
+
"/encoder/layer/1/crossattention/self/key is tied\n",
|
36 |
+
"/encoder/layer/1/crossattention/self/value is tied\n",
|
37 |
+
"/encoder/layer/1/crossattention/output/dense is tied\n",
|
38 |
+
"/encoder/layer/1/crossattention/output/LayerNorm is tied\n",
|
39 |
+
"/encoder/layer/1/intermediate/dense is tied\n",
|
40 |
+
"/encoder/layer/1/output/dense is tied\n",
|
41 |
+
"/encoder/layer/1/output/LayerNorm is tied\n",
|
42 |
+
"--------------\n",
|
43 |
+
"/home/notebook/code/personal/S9049611/BLIP/output/blip_tagtotext_14m/blip_tagtotext_encoderdiv_tar_random_swin/caption_coco_finetune_tagparse_tagfinetune_threshold075_bceloss_tagsingle_5e6_epoch19_negative_1_05_pos_1_10/checkpoint_05.pth\n",
|
44 |
+
"--------------\n",
|
45 |
+
"load checkpoint from /home/notebook/code/personal/S9049611/BLIP/output/blip_tagtotext_14m/blip_tagtotext_encoderdiv_tar_random_swin/caption_coco_finetune_tagparse_tagfinetune_threshold075_bceloss_tagsingle_5e6_epoch19_negative_1_05_pos_1_10/checkpoint_05.pth\n",
|
46 |
+
"vit: swin_b\n",
|
47 |
+
"msg_v2 _IncompatibleKeys(missing_keys=['visual_encoder.layers.0.blocks.0.attn.relative_position_index', 'visual_encoder.layers.0.blocks.1.attn_mask', 'visual_encoder.layers.0.blocks.1.attn.relative_position_index', 'visual_encoder.layers.1.blocks.0.attn.relative_position_index', 'visual_encoder.layers.1.blocks.1.attn_mask', 'visual_encoder.layers.1.blocks.1.attn.relative_position_index', 'visual_encoder.layers.2.blocks.0.attn.relative_position_index', 'visual_encoder.layers.2.blocks.1.attn_mask', 'visual_encoder.layers.2.blocks.1.attn.relative_position_index', 'visual_encoder.layers.2.blocks.2.attn.relative_position_index', 'visual_encoder.layers.2.blocks.3.attn_mask', 'visual_encoder.layers.2.blocks.3.attn.relative_position_index', 'visual_encoder.layers.2.blocks.4.attn.relative_position_index', 'visual_encoder.layers.2.blocks.5.attn_mask', 'visual_encoder.layers.2.blocks.5.attn.relative_position_index', 'visual_encoder.layers.2.blocks.6.attn.relative_position_index', 'visual_encoder.layers.2.blocks.7.attn_mask', 'visual_encoder.layers.2.blocks.7.attn.relative_position_index', 'visual_encoder.layers.2.blocks.8.attn.relative_position_index', 'visual_encoder.layers.2.blocks.9.attn_mask', 'visual_encoder.layers.2.blocks.9.attn.relative_position_index', 'visual_encoder.layers.2.blocks.10.attn.relative_position_index', 'visual_encoder.layers.2.blocks.11.attn_mask', 'visual_encoder.layers.2.blocks.11.attn.relative_position_index', 'visual_encoder.layers.2.blocks.12.attn.relative_position_index', 'visual_encoder.layers.2.blocks.13.attn_mask', 'visual_encoder.layers.2.blocks.13.attn.relative_position_index', 'visual_encoder.layers.2.blocks.14.attn.relative_position_index', 'visual_encoder.layers.2.blocks.15.attn_mask', 'visual_encoder.layers.2.blocks.15.attn.relative_position_index', 'visual_encoder.layers.2.blocks.16.attn.relative_position_index', 'visual_encoder.layers.2.blocks.17.attn_mask', 'visual_encoder.layers.2.blocks.17.attn.relative_position_index', 'visual_encoder.layers.3.blocks.0.attn.relative_position_index', 'visual_encoder.layers.3.blocks.1.attn.relative_position_index'], unexpected_keys=[])\n"
|
48 |
+
]
|
49 |
+
}
|
50 |
+
],
|
51 |
+
"source": [
|
52 |
+
"from PIL import Image\n",
|
53 |
+
"import requests\n",
|
54 |
+
"import torch\n",
|
55 |
+
"from torchvision import transforms\n",
|
56 |
+
"from torchvision.transforms.functional import InterpolationMode\n",
|
57 |
+
"import ruamel_yaml as yaml\n",
|
58 |
+
"from models.tag2text import tag2text_caption\n",
|
59 |
+
"\n",
|
60 |
+
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
|
61 |
+
"\n",
|
62 |
+
"\n",
|
63 |
+
"\n",
|
64 |
+
"import gradio as gr\n",
|
65 |
+
"\n",
|
66 |
+
"image_size = 384\n",
|
67 |
+
"\n",
|
68 |
+
"\n",
|
69 |
+
"normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],\n",
|
70 |
+
" std=[0.229, 0.224, 0.225])\n",
|
71 |
+
"transform = transforms.Compose([transforms.Resize((image_size, image_size)),transforms.ToTensor(),normalize])\n",
|
72 |
+
"\n",
|
73 |
+
"\n",
|
74 |
+
"\n",
|
75 |
+
"#######Swin Version\n",
|
76 |
+
"pretrained = '/home/notebook/code/personal/S9049611/BLIP/output/blip_tagtotext_14m/blip_tagtotext_encoderdiv_tar_random_swin/caption_coco_finetune_tagparse_tagfinetune_threshold075_bceloss_tagsingle_5e6_epoch19_negative_1_05_pos_1_10/checkpoint_05.pth'\n",
|
77 |
+
"\n",
|
78 |
+
"config_file = 'configs/tag2text_caption.yaml'\n",
|
79 |
+
"config = yaml.load(open(config_file, 'r'), Loader=yaml.Loader)\n",
|
80 |
+
"\n",
|
81 |
+
"\n",
|
82 |
+
"model = tag2text_caption(pretrained=pretrained, image_size=image_size, vit=config['vit'], \n",
|
83 |
+
" vit_grad_ckpt=config['vit_grad_ckpt'], vit_ckpt_layer=config['vit_ckpt_layer'],\n",
|
84 |
+
" prompt=config['prompt'],config=config,threshold = 0.75 )\n",
|
85 |
+
"\n",
|
86 |
+
"model.eval()\n",
|
87 |
+
"model = model.to(device)\n",
|
88 |
+
"\n",
|
89 |
+
"\n"
|
90 |
+
]
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"cell_type": "code",
|
94 |
+
"execution_count": 6,
|
95 |
+
"id": "9772dc6f-680d-45a7-b39c-23770eb5258e",
|
96 |
+
"metadata": {},
|
97 |
+
"outputs": [
|
98 |
+
{
|
99 |
+
"name": "stdout",
|
100 |
+
"output_type": "stream",
|
101 |
+
"text": [
|
102 |
+
"Running on local URL: http://127.0.0.1:7864\n",
|
103 |
+
"Running on public URL: https://a10a3bf9-64b6-49d4.gradio.live\n",
|
104 |
+
"\n",
|
105 |
+
"This share link expires in 72 hours. For free permanent hosting and GPU upgrades (NEW!), check out Spaces: https://huggingface.co/spaces\n"
|
106 |
+
]
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"data": {
|
110 |
+
"text/html": [
|
111 |
+
"<div><iframe src=\"https://a10a3bf9-64b6-49d4.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
112 |
+
],
|
113 |
+
"text/plain": [
|
114 |
+
"<IPython.core.display.HTML object>"
|
115 |
+
]
|
116 |
+
},
|
117 |
+
"metadata": {},
|
118 |
+
"output_type": "display_data"
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"data": {
|
122 |
+
"text/plain": []
|
123 |
+
},
|
124 |
+
"execution_count": 6,
|
125 |
+
"metadata": {},
|
126 |
+
"output_type": "execute_result"
|
127 |
+
}
|
128 |
+
],
|
129 |
+
"source": [
|
130 |
+
"\n",
|
131 |
+
"def inference(raw_image, input_tag):\n",
|
132 |
+
" raw_image = raw_image.resize((image_size, image_size))\n",
|
133 |
+
" # print(type(raw_image))\n",
|
134 |
+
" image = transform(raw_image).unsqueeze(0).to(device) \n",
|
135 |
+
" model.threshold = 0.69\n",
|
136 |
+
" if input_tag == '' or input_tag == 'none' or input_tag == 'None':\n",
|
137 |
+
" input_tag_list = None\n",
|
138 |
+
" else:\n",
|
139 |
+
" input_tag_list = []\n",
|
140 |
+
" input_tag_list.append(input_tag.replace(',',' | '))\n",
|
141 |
+
" # print(input_tag_list)\n",
|
142 |
+
" with torch.no_grad():\n",
|
143 |
+
"\n",
|
144 |
+
"\n",
|
145 |
+
" caption, tag_predict = model.generate(image,tag_input = input_tag_list, return_tag_predict = True)\n",
|
146 |
+
" if input_tag_list == None:\n",
|
147 |
+
" tag_1 = tag_predict\n",
|
148 |
+
" tag_2 = ['none']\n",
|
149 |
+
" else:\n",
|
150 |
+
" _, tag_1 = model.generate(image,tag_input = None, return_tag_predict = True)\n",
|
151 |
+
" tag_2 = tag_predict\n",
|
152 |
+
"\n",
|
153 |
+
"\n",
|
154 |
+
" return tag_1[0],tag_2[0],caption[0]\n",
|
155 |
+
"\n",
|
156 |
+
" # return 'caption: '+caption[0], tag_predict[0]\n",
|
157 |
+
"\n",
|
158 |
+
"\n",
|
159 |
+
" \n",
|
160 |
+
"# inputs = [gr.inputs.Image(type='pil'),gr.inputs.Radio(choices=['Image Captioning'], type=\"value\", default=\"Image Captioning\", label=\"Task\"),gr.inputs.Textbox(lines=2, label=\"User Identified Tags (Optional, Enter with commas)\"),gr.inputs.Radio(choices=['Beam search','Nucleus sampling'], type=\"value\", default=\"Beam search\", label=\"Caption Decoding Strategy\")]\n",
|
161 |
+
"inputs = [gr.inputs.Image(type='pil'),gr.inputs.Textbox(lines=2, label=\"User Specified Tags (Optional, Enter with commas)\")]\n",
|
162 |
+
"\n",
|
163 |
+
"# outputs = gr.outputs.Textbox(label=\"Output\")\n",
|
164 |
+
"# outputs = [gr.outputs.Textbox(label=\"Image Caption\"),gr.outputs.Textbox(label=\"Identified Tags\")]\n",
|
165 |
+
"outputs = [gr.outputs.Textbox(label=\"Model Identified Tags\"),gr.outputs.Textbox(label=\"User Specified Tags\"), gr.outputs.Textbox(label=\"Image Caption\") ]\n",
|
166 |
+
"\n",
|
167 |
+
"title = \"Tag2Text\"\n",
|
168 |
+
"description = \"Welcome to Tag2Text demo! (Supported by Fudan University, OPPO Research Institute, International Digital Economy Academy) <br/> Upload your image to get the tags and caption of the image. Optional: You can also input specified tags to get the corresponding caption.\"\n",
|
169 |
+
"\n",
|
170 |
+
"article = \"<p style='text-align: center'><a href='' target='_blank'>Tag2Text: Guiding Language-Image Model via Image Tagging</a> | <a href='' target='_blank'>Github Repo</a></p>\"\n",
|
171 |
+
"\n",
|
172 |
+
"demo = gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=[['images/COCO_val2014_000000483108.jpg',\"none\"],\n",
|
173 |
+
" ['images/COCO_val2014_000000483108.jpg',\"electric cable\"],\n",
|
174 |
+
" ['images/COCO_val2014_000000483108.jpg',\"track, train\"] , \n",
|
175 |
+
" ])\n",
|
176 |
+
"\n",
|
177 |
+
"\n",
|
178 |
+
"demo.launch(share=True)\n",
|
179 |
+
"# demo.launch()"
|
180 |
+
]
|
181 |
+
},
|
182 |
+
{
|
183 |
+
"cell_type": "code",
|
184 |
+
"execution_count": null,
|
185 |
+
"id": "0da1f11b-e737-47a9-9b07-4e00c0835f63",
|
186 |
+
"metadata": {},
|
187 |
+
"outputs": [],
|
188 |
+
"source": [
|
189 |
+
"\n",
|
190 |
+
"def inference(raw_image, input_tag):\n",
|
191 |
+
" raw_image = raw_image.resize((image_size, image_size))\n",
|
192 |
+
" # print(type(raw_image))\n",
|
193 |
+
" image = transform(raw_image).unsqueeze(0).to(device) \n",
|
194 |
+
" model.threshold = 0.69\n",
|
195 |
+
" if input_tag == '' or input_tag == 'none' or input_tag == 'None':\n",
|
196 |
+
" input_tag_list = None\n",
|
197 |
+
" else:\n",
|
198 |
+
" input_tag_list = []\n",
|
199 |
+
" input_tag_list.append(input_tag.replace(',',' | '))\n",
|
200 |
+
" # print(input_tag_list)\n",
|
201 |
+
" with torch.no_grad():\n",
|
202 |
+
"\n",
|
203 |
+
"\n",
|
204 |
+
" caption, tag_predict = model.generate(image,tag_input = input_tag_list, return_tag_predict = True)\n",
|
205 |
+
" if input_tag_list == None:\n",
|
206 |
+
" tag_1 = tag_predict\n",
|
207 |
+
" tag_2 = ['none']\n",
|
208 |
+
" else:\n",
|
209 |
+
" _, tag_1 = model.generate(image,tag_input = None, return_tag_predict = True)\n",
|
210 |
+
" tag_2 = tag_predict\n",
|
211 |
+
"\n",
|
212 |
+
"\n",
|
213 |
+
" return tag_1[0],tag_2[0],caption[0]\n",
|
214 |
+
"\n",
|
215 |
+
" # return 'caption: '+caption[0], tag_predict[0]\n",
|
216 |
+
"\n",
|
217 |
+
"\n",
|
218 |
+
" \n",
|
219 |
+
"# inputs = [gr.inputs.Image(type='pil'),gr.inputs.Radio(choices=['Image Captioning'], type=\"value\", default=\"Image Captioning\", label=\"Task\"),gr.inputs.Textbox(lines=2, label=\"User Identified Tags (Optional, Enter with commas)\"),gr.inputs.Radio(choices=['Beam search','Nucleus sampling'], type=\"value\", default=\"Beam search\", label=\"Caption Decoding Strategy\")]\n",
|
220 |
+
"inputs = [gr.inputs.Image(type='pil'),gr.inputs.Textbox(lines=2, label=\"User Specified Tags (Optional, Enter with commas)\")]\n",
|
221 |
+
"\n",
|
222 |
+
"# outputs = gr.outputs.Textbox(label=\"Output\")\n",
|
223 |
+
"# outputs = [gr.outputs.Textbox(label=\"Image Caption\"),gr.outputs.Textbox(label=\"Identified Tags\")]\n",
|
224 |
+
"outputs = [gr.outputs.Textbox(label=\"Model Identified Tags\"),gr.outputs.Textbox(label=\"User Specified Tags\"), gr.outputs.Textbox(label=\"Image Caption\") ]\n",
|
225 |
+
"\n",
|
226 |
+
"title = \"Tag2Text\"\n",
|
227 |
+
"description = \"Welcome to Tag2Text demo! (Supported by Fudan University, OPPO Research Institute, International Digital Economy Academy) <br/> Upload your image to get the tags and caption of the image. Optional: You can also input specified tags to get the corresponding caption.\"\n",
|
228 |
+
"\n",
|
229 |
+
"article = \"<p style='text-align: center'><a href='' target='_blank'>Tag2Text: Guiding Language-Image Model via Image Tagging</a> | <a href='' target='_blank'>Github Repo</a></p>\"\n",
|
230 |
+
"\n",
|
231 |
+
"demo = gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=[['images/COCO_val2014_000000551338.jpg',\"none\"], \n",
|
232 |
+
" ['images/COCO_val2014_000000551338.jpg',\"fence, sky\"],\n",
|
233 |
+
" # ['images/COCO_val2014_000000551338.jpg',\"grass\"],\n",
|
234 |
+
" ['images/COCO_val2014_000000483108.jpg',\"none\"],\n",
|
235 |
+
" ['images/COCO_val2014_000000483108.jpg',\"electric cable\"],\n",
|
236 |
+
" # ['images/COCO_val2014_000000483108.jpg',\"sky, train\"],\n",
|
237 |
+
" ['images/COCO_val2014_000000483108.jpg',\"track, train\"] , \n",
|
238 |
+
" ['images/COCO_val2014_000000483108.jpg',\"grass\"] \n",
|
239 |
+
" ])\n",
|
240 |
+
"\n",
|
241 |
+
"\n",
|
242 |
+
"demo.launch(share=True)\n",
|
243 |
+
"# demo.launch()"
|
244 |
+
]
|
245 |
+
},
|
246 |
+
{
|
247 |
+
"cell_type": "code",
|
248 |
+
"execution_count": null,
|
249 |
+
"id": "73a4bb88-4200-4853-b1ba-34f0d4b6dc34",
|
250 |
+
"metadata": {},
|
251 |
+
"outputs": [],
|
252 |
+
"source": []
|
253 |
+
},
|
254 |
+
{
|
255 |
+
"cell_type": "code",
|
256 |
+
"execution_count": null,
|
257 |
+
"id": "3340a61f-c6bc-4ead-87ea-b26aa97b7a68",
|
258 |
+
"metadata": {},
|
259 |
+
"outputs": [],
|
260 |
+
"source": []
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"cell_type": "code",
|
264 |
+
"execution_count": null,
|
265 |
+
"id": "d49e3de4-c3f7-4835-90eb-d0d013fc0ffb",
|
266 |
+
"metadata": {},
|
267 |
+
"outputs": [],
|
268 |
+
"source": []
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"cell_type": "code",
|
272 |
+
"execution_count": null,
|
273 |
+
"id": "205e0317-1701-4afd-8d67-bedb6959f350",
|
274 |
+
"metadata": {},
|
275 |
+
"outputs": [],
|
276 |
+
"source": []
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"cell_type": "code",
|
280 |
+
"execution_count": null,
|
281 |
+
"id": "bf5301a5-80c5-4e44-835e-0160a97fef66",
|
282 |
+
"metadata": {},
|
283 |
+
"outputs": [],
|
284 |
+
"source": []
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"cell_type": "code",
|
288 |
+
"execution_count": null,
|
289 |
+
"id": "f63d7a06-7625-4e1c-855d-177971217a0d",
|
290 |
+
"metadata": {},
|
291 |
+
"outputs": [],
|
292 |
+
"source": []
|
293 |
+
},
|
294 |
+
{
|
295 |
+
"cell_type": "code",
|
296 |
+
"execution_count": null,
|
297 |
+
"id": "c929e566-1a6e-4280-96eb-c434ef9a35d0",
|
298 |
+
"metadata": {},
|
299 |
+
"outputs": [],
|
300 |
+
"source": []
|
301 |
+
}
|
302 |
+
],
|
303 |
+
"metadata": {
|
304 |
+
"kernelspec": {
|
305 |
+
"display_name": "Python 3 (ipykernel)",
|
306 |
+
"language": "python",
|
307 |
+
"name": "python3"
|
308 |
+
},
|
309 |
+
"language_info": {
|
310 |
+
"codemirror_mode": {
|
311 |
+
"name": "ipython",
|
312 |
+
"version": 3
|
313 |
+
},
|
314 |
+
"file_extension": ".py",
|
315 |
+
"mimetype": "text/x-python",
|
316 |
+
"name": "python",
|
317 |
+
"nbconvert_exporter": "python",
|
318 |
+
"pygments_lexer": "ipython3",
|
319 |
+
"version": "3.7.12"
|
320 |
+
}
|
321 |
+
},
|
322 |
+
"nbformat": 4,
|
323 |
+
"nbformat_minor": 5
|
324 |
+
}
|
images/COCO_val2014_000000483108.jpg
ADDED
images/COCO_val2014_000000551338.jpg
ADDED
models/__pycache__/med.cpython-37.pyc
ADDED
Binary file (29.2 kB). View file
|
|
models/__pycache__/swin_transformer.cpython-37.pyc
ADDED
Binary file (21.6 kB). View file
|
|
models/__pycache__/tag2text.cpython-37.pyc
ADDED
Binary file (11.9 kB). View file
|
|
models/__pycache__/vit.cpython-37.pyc
ADDED
Binary file (12.3 kB). View file
|
|
models/med.py
ADDED
@@ -0,0 +1,1031 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
* Copyright (c) 2022, salesforce.com, inc.
|
3 |
+
* All rights reserved.
|
4 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
5 |
+
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
6 |
+
* By Junnan Li
|
7 |
+
* Based on huggingface code base
|
8 |
+
* https://github.com/huggingface/transformers/blob/v4.15.0/src/transformers/models/bert
|
9 |
+
'''
|
10 |
+
|
11 |
+
import math
|
12 |
+
import os
|
13 |
+
import warnings
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Optional, Tuple
|
16 |
+
|
17 |
+
import torch
|
18 |
+
from torch import Tensor, device, dtype, nn
|
19 |
+
import torch.utils.checkpoint
|
20 |
+
from torch import nn
|
21 |
+
from torch.nn import CrossEntropyLoss
|
22 |
+
import torch.nn.functional as F
|
23 |
+
|
24 |
+
from transformers.activations import ACT2FN
|
25 |
+
from transformers.file_utils import (
|
26 |
+
ModelOutput,
|
27 |
+
)
|
28 |
+
from transformers.modeling_outputs import (
|
29 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
30 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
31 |
+
CausalLMOutputWithCrossAttentions,
|
32 |
+
MaskedLMOutput,
|
33 |
+
MultipleChoiceModelOutput,
|
34 |
+
NextSentencePredictorOutput,
|
35 |
+
QuestionAnsweringModelOutput,
|
36 |
+
SequenceClassifierOutput,
|
37 |
+
TokenClassifierOutput,
|
38 |
+
)
|
39 |
+
from transformers.modeling_utils import (
|
40 |
+
PreTrainedModel,
|
41 |
+
apply_chunking_to_forward,
|
42 |
+
find_pruneable_heads_and_indices,
|
43 |
+
prune_linear_layer,
|
44 |
+
)
|
45 |
+
from transformers.utils import logging
|
46 |
+
from transformers.models.bert.configuration_bert import BertConfig
|
47 |
+
|
48 |
+
|
49 |
+
logger = logging.get_logger(__name__)
|
50 |
+
|
51 |
+
|
52 |
+
class BertEmbeddings_nopos(nn.Module):
|
53 |
+
"""Construct the embeddings from word and position embeddings."""
|
54 |
+
|
55 |
+
def __init__(self, config):
|
56 |
+
super().__init__()
|
57 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
58 |
+
# self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
59 |
+
|
60 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
61 |
+
# any TensorFlow checkpoint file
|
62 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
63 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
64 |
+
|
65 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
66 |
+
# self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
|
67 |
+
# self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
68 |
+
|
69 |
+
self.config = config
|
70 |
+
|
71 |
+
def forward(
|
72 |
+
self, input_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
|
73 |
+
):
|
74 |
+
if input_ids is not None:
|
75 |
+
input_shape = input_ids.size()
|
76 |
+
else:
|
77 |
+
input_shape = inputs_embeds.size()[:-1]
|
78 |
+
|
79 |
+
seq_length = input_shape[1]
|
80 |
+
|
81 |
+
# if position_ids is None:
|
82 |
+
# position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
|
83 |
+
|
84 |
+
if inputs_embeds is None:
|
85 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
86 |
+
|
87 |
+
embeddings = inputs_embeds
|
88 |
+
|
89 |
+
# if self.position_embedding_type == "absolute":
|
90 |
+
# position_embeddings = self.position_embeddings(position_ids)
|
91 |
+
# # print('add position_embeddings!!!!')
|
92 |
+
# embeddings += position_embeddings
|
93 |
+
embeddings = self.LayerNorm(embeddings)
|
94 |
+
embeddings = self.dropout(embeddings)
|
95 |
+
return embeddings
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
class BertEmbeddings(nn.Module):
|
101 |
+
"""Construct the embeddings from word and position embeddings."""
|
102 |
+
|
103 |
+
def __init__(self, config):
|
104 |
+
super().__init__()
|
105 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
106 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
107 |
+
|
108 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
109 |
+
# any TensorFlow checkpoint file
|
110 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
111 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
112 |
+
|
113 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
114 |
+
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
|
115 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
116 |
+
|
117 |
+
self.config = config
|
118 |
+
|
119 |
+
def forward(
|
120 |
+
self, input_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
|
121 |
+
):
|
122 |
+
if input_ids is not None:
|
123 |
+
input_shape = input_ids.size()
|
124 |
+
else:
|
125 |
+
input_shape = inputs_embeds.size()[:-1]
|
126 |
+
|
127 |
+
seq_length = input_shape[1]
|
128 |
+
|
129 |
+
if position_ids is None:
|
130 |
+
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
|
131 |
+
|
132 |
+
if inputs_embeds is None:
|
133 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
134 |
+
|
135 |
+
embeddings = inputs_embeds
|
136 |
+
|
137 |
+
if self.position_embedding_type == "absolute":
|
138 |
+
position_embeddings = self.position_embeddings(position_ids)
|
139 |
+
# print('add position_embeddings!!!!')
|
140 |
+
embeddings += position_embeddings
|
141 |
+
embeddings = self.LayerNorm(embeddings)
|
142 |
+
embeddings = self.dropout(embeddings)
|
143 |
+
return embeddings
|
144 |
+
|
145 |
+
|
146 |
+
class BertSelfAttention(nn.Module):
|
147 |
+
def __init__(self, config, is_cross_attention):
|
148 |
+
super().__init__()
|
149 |
+
self.config = config
|
150 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
151 |
+
raise ValueError(
|
152 |
+
"The hidden size (%d) is not a multiple of the number of attention "
|
153 |
+
"heads (%d)" % (config.hidden_size, config.num_attention_heads)
|
154 |
+
)
|
155 |
+
|
156 |
+
self.num_attention_heads = config.num_attention_heads
|
157 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
158 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
159 |
+
|
160 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
161 |
+
if is_cross_attention:
|
162 |
+
self.key = nn.Linear(config.encoder_width, self.all_head_size)
|
163 |
+
self.value = nn.Linear(config.encoder_width, self.all_head_size)
|
164 |
+
else:
|
165 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
166 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
167 |
+
|
168 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
169 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
170 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
171 |
+
self.max_position_embeddings = config.max_position_embeddings
|
172 |
+
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
173 |
+
self.save_attention = False
|
174 |
+
|
175 |
+
def save_attn_gradients(self, attn_gradients):
|
176 |
+
self.attn_gradients = attn_gradients
|
177 |
+
|
178 |
+
def get_attn_gradients(self):
|
179 |
+
return self.attn_gradients
|
180 |
+
|
181 |
+
def save_attention_map(self, attention_map):
|
182 |
+
self.attention_map = attention_map
|
183 |
+
|
184 |
+
def get_attention_map(self):
|
185 |
+
return self.attention_map
|
186 |
+
|
187 |
+
def transpose_for_scores(self, x):
|
188 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
189 |
+
x = x.view(*new_x_shape)
|
190 |
+
return x.permute(0, 2, 1, 3)
|
191 |
+
|
192 |
+
def forward(
|
193 |
+
self,
|
194 |
+
hidden_states,
|
195 |
+
attention_mask=None,
|
196 |
+
head_mask=None,
|
197 |
+
encoder_hidden_states=None,
|
198 |
+
encoder_attention_mask=None,
|
199 |
+
past_key_value=None,
|
200 |
+
output_attentions=False,
|
201 |
+
):
|
202 |
+
mixed_query_layer = self.query(hidden_states)
|
203 |
+
|
204 |
+
# If this is instantiated as a cross-attention module, the keys
|
205 |
+
# and values come from an encoder; the attention mask needs to be
|
206 |
+
# such that the encoder's padding tokens are not attended to.
|
207 |
+
is_cross_attention = encoder_hidden_states is not None
|
208 |
+
|
209 |
+
if is_cross_attention:
|
210 |
+
# print(self.key.weight.shape)
|
211 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
212 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
213 |
+
attention_mask = encoder_attention_mask
|
214 |
+
elif past_key_value is not None:
|
215 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
216 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
217 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
218 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
219 |
+
else:
|
220 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
221 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
222 |
+
|
223 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
224 |
+
|
225 |
+
past_key_value = (key_layer, value_layer)
|
226 |
+
|
227 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
228 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
229 |
+
|
230 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
231 |
+
seq_length = hidden_states.size()[1]
|
232 |
+
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
233 |
+
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
234 |
+
distance = position_ids_l - position_ids_r
|
235 |
+
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
236 |
+
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
237 |
+
|
238 |
+
if self.position_embedding_type == "relative_key":
|
239 |
+
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
240 |
+
attention_scores = attention_scores + relative_position_scores
|
241 |
+
elif self.position_embedding_type == "relative_key_query":
|
242 |
+
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
243 |
+
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
244 |
+
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
245 |
+
|
246 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
247 |
+
if attention_mask is not None:
|
248 |
+
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
249 |
+
attention_scores = attention_scores + attention_mask
|
250 |
+
|
251 |
+
# Normalize the attention scores to probabilities.
|
252 |
+
attention_probs = nn.Softmax(dim=-1)(attention_scores)
|
253 |
+
|
254 |
+
if is_cross_attention and self.save_attention:
|
255 |
+
self.save_attention_map(attention_probs)
|
256 |
+
attention_probs.register_hook(self.save_attn_gradients)
|
257 |
+
|
258 |
+
# This is actually dropping out entire tokens to attend to, which might
|
259 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
260 |
+
attention_probs_dropped = self.dropout(attention_probs)
|
261 |
+
|
262 |
+
# Mask heads if we want to
|
263 |
+
if head_mask is not None:
|
264 |
+
attention_probs_dropped = attention_probs_dropped * head_mask
|
265 |
+
|
266 |
+
context_layer = torch.matmul(attention_probs_dropped, value_layer)
|
267 |
+
|
268 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
269 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
270 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
271 |
+
|
272 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
273 |
+
|
274 |
+
outputs = outputs + (past_key_value,)
|
275 |
+
return outputs
|
276 |
+
|
277 |
+
|
278 |
+
class BertSelfOutput(nn.Module):
|
279 |
+
def __init__(self, config):
|
280 |
+
super().__init__()
|
281 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
282 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
283 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
284 |
+
|
285 |
+
def forward(self, hidden_states, input_tensor):
|
286 |
+
hidden_states = self.dense(hidden_states)
|
287 |
+
hidden_states = self.dropout(hidden_states)
|
288 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
289 |
+
return hidden_states
|
290 |
+
|
291 |
+
|
292 |
+
class BertAttention(nn.Module):
|
293 |
+
def __init__(self, config, is_cross_attention=False):
|
294 |
+
super().__init__()
|
295 |
+
self.self = BertSelfAttention(config, is_cross_attention)
|
296 |
+
self.output = BertSelfOutput(config)
|
297 |
+
self.pruned_heads = set()
|
298 |
+
|
299 |
+
def prune_heads(self, heads):
|
300 |
+
if len(heads) == 0:
|
301 |
+
return
|
302 |
+
heads, index = find_pruneable_heads_and_indices(
|
303 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
304 |
+
)
|
305 |
+
|
306 |
+
# Prune linear layers
|
307 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
308 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
309 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
310 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
311 |
+
|
312 |
+
# Update hyper params and store pruned heads
|
313 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
314 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
315 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
316 |
+
|
317 |
+
def forward(
|
318 |
+
self,
|
319 |
+
hidden_states,
|
320 |
+
attention_mask=None,
|
321 |
+
head_mask=None,
|
322 |
+
encoder_hidden_states=None,
|
323 |
+
encoder_attention_mask=None,
|
324 |
+
past_key_value=None,
|
325 |
+
output_attentions=False,
|
326 |
+
):
|
327 |
+
self_outputs = self.self(
|
328 |
+
hidden_states,
|
329 |
+
attention_mask,
|
330 |
+
head_mask,
|
331 |
+
encoder_hidden_states,
|
332 |
+
encoder_attention_mask,
|
333 |
+
past_key_value,
|
334 |
+
output_attentions,
|
335 |
+
)
|
336 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
337 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
338 |
+
return outputs
|
339 |
+
|
340 |
+
|
341 |
+
class BertIntermediate(nn.Module):
|
342 |
+
def __init__(self, config):
|
343 |
+
super().__init__()
|
344 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
345 |
+
if isinstance(config.hidden_act, str):
|
346 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
347 |
+
else:
|
348 |
+
self.intermediate_act_fn = config.hidden_act
|
349 |
+
|
350 |
+
def forward(self, hidden_states):
|
351 |
+
hidden_states = self.dense(hidden_states)
|
352 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
353 |
+
return hidden_states
|
354 |
+
|
355 |
+
|
356 |
+
class BertOutput(nn.Module):
|
357 |
+
def __init__(self, config):
|
358 |
+
super().__init__()
|
359 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
360 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
361 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
362 |
+
|
363 |
+
def forward(self, hidden_states, input_tensor):
|
364 |
+
hidden_states = self.dense(hidden_states)
|
365 |
+
hidden_states = self.dropout(hidden_states)
|
366 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
367 |
+
return hidden_states
|
368 |
+
|
369 |
+
|
370 |
+
class BertLayer(nn.Module):
|
371 |
+
def __init__(self, config, layer_num):
|
372 |
+
super().__init__()
|
373 |
+
self.config = config
|
374 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
375 |
+
self.seq_len_dim = 1
|
376 |
+
self.attention = BertAttention(config)
|
377 |
+
self.layer_num = layer_num
|
378 |
+
if self.config.add_cross_attention:
|
379 |
+
self.crossattention = BertAttention(config, is_cross_attention=self.config.add_cross_attention)
|
380 |
+
self.intermediate = BertIntermediate(config)
|
381 |
+
self.output = BertOutput(config)
|
382 |
+
|
383 |
+
def forward(
|
384 |
+
self,
|
385 |
+
hidden_states,
|
386 |
+
attention_mask=None,
|
387 |
+
head_mask=None,
|
388 |
+
encoder_hidden_states=None,
|
389 |
+
encoder_attention_mask=None,
|
390 |
+
past_key_value=None,
|
391 |
+
output_attentions=False,
|
392 |
+
mode=None,
|
393 |
+
):
|
394 |
+
|
395 |
+
if mode == 'mlr':
|
396 |
+
|
397 |
+
assert encoder_hidden_states is not None, "encoder_hidden_states must be given for cross-attention layers"
|
398 |
+
|
399 |
+
# print('attention_output.shape',attention_output.shape)
|
400 |
+
# print('encoder_hidden_states.shape',encoder_hidden_states.shape)
|
401 |
+
cross_attention_outputs = self.crossattention(
|
402 |
+
hidden_states,
|
403 |
+
attention_mask,
|
404 |
+
head_mask,
|
405 |
+
encoder_hidden_states,
|
406 |
+
encoder_attention_mask,
|
407 |
+
output_attentions=output_attentions,
|
408 |
+
)
|
409 |
+
attention_output = cross_attention_outputs[0]
|
410 |
+
outputs = cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
411 |
+
|
412 |
+
present_key_value = cross_attention_outputs[-1]
|
413 |
+
|
414 |
+
else:
|
415 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
416 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
417 |
+
self_attention_outputs = self.attention(
|
418 |
+
hidden_states,
|
419 |
+
attention_mask,
|
420 |
+
head_mask,
|
421 |
+
output_attentions=output_attentions,
|
422 |
+
past_key_value=self_attn_past_key_value,
|
423 |
+
)
|
424 |
+
attention_output = self_attention_outputs[0]
|
425 |
+
|
426 |
+
outputs = self_attention_outputs[1:-1]
|
427 |
+
present_key_value = self_attention_outputs[-1]
|
428 |
+
|
429 |
+
if mode=='multimodal':
|
430 |
+
assert encoder_hidden_states is not None, "encoder_hidden_states must be given for cross-attention layers"
|
431 |
+
|
432 |
+
cross_attention_outputs = self.crossattention(
|
433 |
+
attention_output,
|
434 |
+
attention_mask,
|
435 |
+
head_mask,
|
436 |
+
encoder_hidden_states,
|
437 |
+
encoder_attention_mask,
|
438 |
+
output_attentions=output_attentions,
|
439 |
+
)
|
440 |
+
attention_output = cross_attention_outputs[0]
|
441 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
442 |
+
layer_output = apply_chunking_to_forward(
|
443 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
444 |
+
)
|
445 |
+
outputs = (layer_output,) + outputs
|
446 |
+
|
447 |
+
outputs = outputs + (present_key_value,)
|
448 |
+
|
449 |
+
return outputs
|
450 |
+
|
451 |
+
def feed_forward_chunk(self, attention_output):
|
452 |
+
intermediate_output = self.intermediate(attention_output)
|
453 |
+
layer_output = self.output(intermediate_output, attention_output)
|
454 |
+
return layer_output
|
455 |
+
|
456 |
+
|
457 |
+
class BertEncoder(nn.Module):
|
458 |
+
def __init__(self, config):
|
459 |
+
super().__init__()
|
460 |
+
self.config = config
|
461 |
+
self.layer = nn.ModuleList([BertLayer(config,i) for i in range(config.num_hidden_layers)])
|
462 |
+
self.gradient_checkpointing = False
|
463 |
+
|
464 |
+
def forward(
|
465 |
+
self,
|
466 |
+
hidden_states,
|
467 |
+
attention_mask=None,
|
468 |
+
head_mask=None,
|
469 |
+
encoder_hidden_states=None,
|
470 |
+
encoder_attention_mask=None,
|
471 |
+
past_key_values=None,
|
472 |
+
use_cache=None,
|
473 |
+
output_attentions=False,
|
474 |
+
output_hidden_states=False,
|
475 |
+
return_dict=True,
|
476 |
+
mode='multimodal',
|
477 |
+
):
|
478 |
+
all_hidden_states = () if output_hidden_states else None
|
479 |
+
all_self_attentions = () if output_attentions else None
|
480 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
481 |
+
|
482 |
+
next_decoder_cache = () if use_cache else None
|
483 |
+
|
484 |
+
for i in range(self.config.num_hidden_layers):
|
485 |
+
layer_module = self.layer[i]
|
486 |
+
if output_hidden_states:
|
487 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
488 |
+
|
489 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
490 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
491 |
+
|
492 |
+
if self.gradient_checkpointing and self.training:
|
493 |
+
|
494 |
+
if use_cache:
|
495 |
+
logger.warn(
|
496 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
497 |
+
)
|
498 |
+
use_cache = False
|
499 |
+
|
500 |
+
def create_custom_forward(module):
|
501 |
+
def custom_forward(*inputs):
|
502 |
+
return module(*inputs, past_key_value, output_attentions)
|
503 |
+
|
504 |
+
return custom_forward
|
505 |
+
|
506 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
507 |
+
create_custom_forward(layer_module),
|
508 |
+
hidden_states,
|
509 |
+
attention_mask,
|
510 |
+
layer_head_mask,
|
511 |
+
encoder_hidden_states,
|
512 |
+
encoder_attention_mask,
|
513 |
+
mode=mode,
|
514 |
+
)
|
515 |
+
else:
|
516 |
+
layer_outputs = layer_module(
|
517 |
+
hidden_states,
|
518 |
+
attention_mask,
|
519 |
+
layer_head_mask,
|
520 |
+
encoder_hidden_states,
|
521 |
+
encoder_attention_mask,
|
522 |
+
past_key_value,
|
523 |
+
output_attentions,
|
524 |
+
mode=mode,
|
525 |
+
)
|
526 |
+
|
527 |
+
hidden_states = layer_outputs[0]
|
528 |
+
if use_cache:
|
529 |
+
next_decoder_cache += (layer_outputs[-1],)
|
530 |
+
if output_attentions:
|
531 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
532 |
+
|
533 |
+
if output_hidden_states:
|
534 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
535 |
+
|
536 |
+
if not return_dict:
|
537 |
+
return tuple(
|
538 |
+
v
|
539 |
+
for v in [
|
540 |
+
hidden_states,
|
541 |
+
next_decoder_cache,
|
542 |
+
all_hidden_states,
|
543 |
+
all_self_attentions,
|
544 |
+
all_cross_attentions,
|
545 |
+
]
|
546 |
+
if v is not None
|
547 |
+
)
|
548 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
549 |
+
last_hidden_state=hidden_states,
|
550 |
+
past_key_values=next_decoder_cache,
|
551 |
+
hidden_states=all_hidden_states,
|
552 |
+
attentions=all_self_attentions,
|
553 |
+
cross_attentions=all_cross_attentions,
|
554 |
+
)
|
555 |
+
|
556 |
+
|
557 |
+
class BertPooler(nn.Module):
|
558 |
+
def __init__(self, config):
|
559 |
+
super().__init__()
|
560 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
561 |
+
self.activation = nn.Tanh()
|
562 |
+
|
563 |
+
def forward(self, hidden_states):
|
564 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
565 |
+
# to the first token.
|
566 |
+
first_token_tensor = hidden_states[:, 0]
|
567 |
+
pooled_output = self.dense(first_token_tensor)
|
568 |
+
pooled_output = self.activation(pooled_output)
|
569 |
+
return pooled_output
|
570 |
+
|
571 |
+
|
572 |
+
class BertPredictionHeadTransform(nn.Module):
|
573 |
+
def __init__(self, config):
|
574 |
+
super().__init__()
|
575 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
576 |
+
if isinstance(config.hidden_act, str):
|
577 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
578 |
+
else:
|
579 |
+
self.transform_act_fn = config.hidden_act
|
580 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
581 |
+
|
582 |
+
def forward(self, hidden_states):
|
583 |
+
hidden_states = self.dense(hidden_states)
|
584 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
585 |
+
hidden_states = self.LayerNorm(hidden_states)
|
586 |
+
return hidden_states
|
587 |
+
|
588 |
+
|
589 |
+
class BertLMPredictionHead(nn.Module):
|
590 |
+
def __init__(self, config):
|
591 |
+
super().__init__()
|
592 |
+
self.transform = BertPredictionHeadTransform(config)
|
593 |
+
|
594 |
+
# The output weights are the same as the input embeddings, but there is
|
595 |
+
# an output-only bias for each token.
|
596 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
597 |
+
|
598 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
599 |
+
|
600 |
+
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
601 |
+
self.decoder.bias = self.bias
|
602 |
+
|
603 |
+
def forward(self, hidden_states):
|
604 |
+
hidden_states = self.transform(hidden_states)
|
605 |
+
hidden_states = self.decoder(hidden_states)
|
606 |
+
return hidden_states
|
607 |
+
|
608 |
+
|
609 |
+
class BertOnlyMLMHead(nn.Module):
|
610 |
+
def __init__(self, config):
|
611 |
+
super().__init__()
|
612 |
+
self.predictions = BertLMPredictionHead(config)
|
613 |
+
|
614 |
+
def forward(self, sequence_output):
|
615 |
+
prediction_scores = self.predictions(sequence_output)
|
616 |
+
return prediction_scores
|
617 |
+
|
618 |
+
|
619 |
+
class BertPreTrainedModel(PreTrainedModel):
|
620 |
+
"""
|
621 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
622 |
+
models.
|
623 |
+
"""
|
624 |
+
|
625 |
+
config_class = BertConfig
|
626 |
+
base_model_prefix = "bert"
|
627 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
628 |
+
|
629 |
+
def _init_weights(self, module):
|
630 |
+
""" Initialize the weights """
|
631 |
+
if isinstance(module, (nn.Linear, nn.Embedding)):
|
632 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
633 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
634 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
635 |
+
elif isinstance(module, nn.LayerNorm):
|
636 |
+
module.bias.data.zero_()
|
637 |
+
module.weight.data.fill_(1.0)
|
638 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
639 |
+
module.bias.data.zero_()
|
640 |
+
|
641 |
+
|
642 |
+
class BertModel(BertPreTrainedModel):
|
643 |
+
"""
|
644 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
645 |
+
cross-attention is added between the self-attention layers, following the architecture described in `Attention is
|
646 |
+
all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
647 |
+
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
648 |
+
argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an
|
649 |
+
input to the forward pass.
|
650 |
+
"""
|
651 |
+
|
652 |
+
def __init__(self, config, add_pooling_layer=True):
|
653 |
+
super().__init__(config)
|
654 |
+
self.config = config
|
655 |
+
|
656 |
+
self.embeddings = BertEmbeddings(config)
|
657 |
+
|
658 |
+
self.encoder = BertEncoder(config)
|
659 |
+
|
660 |
+
self.pooler = BertPooler(config) if add_pooling_layer else None
|
661 |
+
|
662 |
+
self.init_weights()
|
663 |
+
|
664 |
+
|
665 |
+
def get_input_embeddings(self):
|
666 |
+
return self.embeddings.word_embeddings
|
667 |
+
|
668 |
+
def set_input_embeddings(self, value):
|
669 |
+
self.embeddings.word_embeddings = value
|
670 |
+
|
671 |
+
def _prune_heads(self, heads_to_prune):
|
672 |
+
"""
|
673 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
674 |
+
class PreTrainedModel
|
675 |
+
"""
|
676 |
+
for layer, heads in heads_to_prune.items():
|
677 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
678 |
+
|
679 |
+
|
680 |
+
def get_extended_attention_mask(self, attention_mask: Tensor, input_shape: Tuple[int], device: device, is_decoder: bool) -> Tensor:
|
681 |
+
"""
|
682 |
+
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
|
683 |
+
|
684 |
+
Arguments:
|
685 |
+
attention_mask (:obj:`torch.Tensor`):
|
686 |
+
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
|
687 |
+
input_shape (:obj:`Tuple[int]`):
|
688 |
+
The shape of the input to the model.
|
689 |
+
device: (:obj:`torch.device`):
|
690 |
+
The device of the input to the model.
|
691 |
+
|
692 |
+
Returns:
|
693 |
+
:obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
|
694 |
+
"""
|
695 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
696 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
697 |
+
if attention_mask.dim() == 3:
|
698 |
+
extended_attention_mask = attention_mask[:, None, :, :]
|
699 |
+
elif attention_mask.dim() == 2:
|
700 |
+
# Provided a padding mask of dimensions [batch_size, seq_length]
|
701 |
+
# - if the model is a decoder, apply a causal mask in addition to the padding mask
|
702 |
+
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
703 |
+
if is_decoder:
|
704 |
+
batch_size, seq_length = input_shape
|
705 |
+
|
706 |
+
seq_ids = torch.arange(seq_length, device=device)
|
707 |
+
causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
|
708 |
+
# in case past_key_values are used we need to add a prefix ones mask to the causal mask
|
709 |
+
# causal and attention masks must have same type with pytorch version < 1.3
|
710 |
+
causal_mask = causal_mask.to(attention_mask.dtype)
|
711 |
+
|
712 |
+
if causal_mask.shape[1] < attention_mask.shape[1]:
|
713 |
+
prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
|
714 |
+
causal_mask = torch.cat(
|
715 |
+
[
|
716 |
+
torch.ones((batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype),
|
717 |
+
causal_mask,
|
718 |
+
],
|
719 |
+
axis=-1,
|
720 |
+
)
|
721 |
+
|
722 |
+
extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
|
723 |
+
else:
|
724 |
+
extended_attention_mask = attention_mask[:, None, None, :]
|
725 |
+
else:
|
726 |
+
raise ValueError(
|
727 |
+
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
|
728 |
+
input_shape, attention_mask.shape
|
729 |
+
)
|
730 |
+
)
|
731 |
+
|
732 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
733 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
734 |
+
# positions we want to attend and -10000.0 for masked positions.
|
735 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
736 |
+
# effectively the same as removing these entirely.
|
737 |
+
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
738 |
+
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
|
739 |
+
return extended_attention_mask
|
740 |
+
|
741 |
+
def forward(
|
742 |
+
self,
|
743 |
+
input_ids=None,
|
744 |
+
attention_mask=None,
|
745 |
+
position_ids=None,
|
746 |
+
head_mask=None,
|
747 |
+
inputs_embeds=None,
|
748 |
+
encoder_embeds=None,
|
749 |
+
encoder_hidden_states=None,
|
750 |
+
encoder_attention_mask=None,
|
751 |
+
past_key_values=None,
|
752 |
+
use_cache=None,
|
753 |
+
output_attentions=None,
|
754 |
+
output_hidden_states=None,
|
755 |
+
return_dict=None,
|
756 |
+
is_decoder=False,
|
757 |
+
mode='multimodal',
|
758 |
+
):
|
759 |
+
r"""
|
760 |
+
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
761 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
762 |
+
the model is configured as a decoder.
|
763 |
+
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
764 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
765 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
|
766 |
+
- 1 for tokens that are **not masked**,
|
767 |
+
- 0 for tokens that are **masked**.
|
768 |
+
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
769 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
770 |
+
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
771 |
+
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
772 |
+
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
|
773 |
+
use_cache (:obj:`bool`, `optional`):
|
774 |
+
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
775 |
+
decoding (see :obj:`past_key_values`).
|
776 |
+
"""
|
777 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
778 |
+
output_hidden_states = (
|
779 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
780 |
+
)
|
781 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
782 |
+
|
783 |
+
if is_decoder:
|
784 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
785 |
+
else:
|
786 |
+
use_cache = False
|
787 |
+
|
788 |
+
if input_ids is not None and inputs_embeds is not None:
|
789 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
790 |
+
elif input_ids is not None:
|
791 |
+
input_shape = input_ids.size()
|
792 |
+
batch_size, seq_length = input_shape
|
793 |
+
device = input_ids.device
|
794 |
+
elif inputs_embeds is not None:
|
795 |
+
input_shape = inputs_embeds.size()[:-1]
|
796 |
+
batch_size, seq_length = input_shape
|
797 |
+
device = inputs_embeds.device
|
798 |
+
elif encoder_embeds is not None:
|
799 |
+
input_shape = encoder_embeds.size()[:-1]
|
800 |
+
batch_size, seq_length = input_shape
|
801 |
+
device = encoder_embeds.device
|
802 |
+
else:
|
803 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds or encoder_embeds")
|
804 |
+
|
805 |
+
# past_key_values_length
|
806 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
807 |
+
|
808 |
+
if attention_mask is None:
|
809 |
+
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
810 |
+
|
811 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
812 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
813 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape,
|
814 |
+
device, is_decoder)
|
815 |
+
|
816 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
817 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
818 |
+
if encoder_hidden_states is not None:
|
819 |
+
if type(encoder_hidden_states) == list:
|
820 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size()
|
821 |
+
else:
|
822 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
823 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
824 |
+
|
825 |
+
if type(encoder_attention_mask) == list:
|
826 |
+
encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask]
|
827 |
+
elif encoder_attention_mask is None:
|
828 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
829 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
830 |
+
else:
|
831 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
832 |
+
else:
|
833 |
+
encoder_extended_attention_mask = None
|
834 |
+
|
835 |
+
# Prepare head mask if needed
|
836 |
+
# 1.0 in head_mask indicate we keep the head
|
837 |
+
# attention_probs has shape bsz x n_heads x N x N
|
838 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
839 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
840 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
841 |
+
|
842 |
+
if encoder_embeds is None:
|
843 |
+
embedding_output = self.embeddings(
|
844 |
+
input_ids=input_ids,
|
845 |
+
position_ids=position_ids,
|
846 |
+
inputs_embeds=inputs_embeds,
|
847 |
+
past_key_values_length=past_key_values_length,
|
848 |
+
)
|
849 |
+
else:
|
850 |
+
embedding_output = encoder_embeds
|
851 |
+
|
852 |
+
encoder_outputs = self.encoder(
|
853 |
+
embedding_output,
|
854 |
+
attention_mask=extended_attention_mask,
|
855 |
+
head_mask=head_mask,
|
856 |
+
encoder_hidden_states=encoder_hidden_states,
|
857 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
858 |
+
past_key_values=past_key_values,
|
859 |
+
use_cache=use_cache,
|
860 |
+
output_attentions=output_attentions,
|
861 |
+
output_hidden_states=output_hidden_states,
|
862 |
+
return_dict=return_dict,
|
863 |
+
mode=mode,
|
864 |
+
)
|
865 |
+
sequence_output = encoder_outputs[0]
|
866 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
867 |
+
|
868 |
+
if not return_dict:
|
869 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
870 |
+
|
871 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
872 |
+
last_hidden_state=sequence_output,
|
873 |
+
pooler_output=pooled_output,
|
874 |
+
past_key_values=encoder_outputs.past_key_values,
|
875 |
+
hidden_states=encoder_outputs.hidden_states,
|
876 |
+
attentions=encoder_outputs.attentions,
|
877 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
878 |
+
)
|
879 |
+
|
880 |
+
|
881 |
+
class BertLMHeadModel(BertPreTrainedModel):
|
882 |
+
|
883 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
884 |
+
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
|
885 |
+
|
886 |
+
def __init__(self, config):
|
887 |
+
super().__init__(config)
|
888 |
+
|
889 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
890 |
+
self.cls = BertOnlyMLMHead(config)
|
891 |
+
|
892 |
+
self.init_weights()
|
893 |
+
|
894 |
+
def get_output_embeddings(self):
|
895 |
+
return self.cls.predictions.decoder
|
896 |
+
|
897 |
+
def set_output_embeddings(self, new_embeddings):
|
898 |
+
self.cls.predictions.decoder = new_embeddings
|
899 |
+
|
900 |
+
def forward(
|
901 |
+
self,
|
902 |
+
input_ids=None,
|
903 |
+
attention_mask=None,
|
904 |
+
position_ids=None,
|
905 |
+
head_mask=None,
|
906 |
+
inputs_embeds=None,
|
907 |
+
encoder_hidden_states=None,
|
908 |
+
encoder_attention_mask=None,
|
909 |
+
labels=None,
|
910 |
+
past_key_values=None,
|
911 |
+
use_cache=None,
|
912 |
+
output_attentions=None,
|
913 |
+
output_hidden_states=None,
|
914 |
+
return_dict=None,
|
915 |
+
return_logits=False,
|
916 |
+
is_decoder=True,
|
917 |
+
reduction='mean',
|
918 |
+
mode='multimodal',
|
919 |
+
):
|
920 |
+
r"""
|
921 |
+
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
922 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
923 |
+
the model is configured as a decoder.
|
924 |
+
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
925 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
926 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
|
927 |
+
- 1 for tokens that are **not masked**,
|
928 |
+
- 0 for tokens that are **masked**.
|
929 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
930 |
+
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
931 |
+
``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are
|
932 |
+
ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]``
|
933 |
+
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
934 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
935 |
+
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
936 |
+
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
937 |
+
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
|
938 |
+
use_cache (:obj:`bool`, `optional`):
|
939 |
+
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
940 |
+
decoding (see :obj:`past_key_values`).
|
941 |
+
Returns:
|
942 |
+
Example::
|
943 |
+
>>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig
|
944 |
+
>>> import torch
|
945 |
+
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
|
946 |
+
>>> config = BertConfig.from_pretrained("bert-base-cased")
|
947 |
+
>>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config)
|
948 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
949 |
+
>>> outputs = model(**inputs)
|
950 |
+
>>> prediction_logits = outputs.logits
|
951 |
+
"""
|
952 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
953 |
+
if labels is not None:
|
954 |
+
use_cache = False
|
955 |
+
|
956 |
+
outputs = self.bert(
|
957 |
+
input_ids,
|
958 |
+
attention_mask=attention_mask,
|
959 |
+
position_ids=position_ids,
|
960 |
+
head_mask=head_mask,
|
961 |
+
inputs_embeds=inputs_embeds,
|
962 |
+
encoder_hidden_states=encoder_hidden_states,
|
963 |
+
encoder_attention_mask=encoder_attention_mask,
|
964 |
+
past_key_values=past_key_values,
|
965 |
+
use_cache=use_cache,
|
966 |
+
output_attentions=output_attentions,
|
967 |
+
output_hidden_states=output_hidden_states,
|
968 |
+
return_dict=return_dict,
|
969 |
+
is_decoder=is_decoder,
|
970 |
+
mode=mode,
|
971 |
+
)
|
972 |
+
|
973 |
+
sequence_output = outputs[0]
|
974 |
+
prediction_scores = self.cls(sequence_output)
|
975 |
+
# sequence_output.shape torch.Size([85, 30, 768])
|
976 |
+
# prediction_scores.shape torch.Size([85, 30, 30524])
|
977 |
+
# labels.shape torch.Size([85, 30])
|
978 |
+
|
979 |
+
|
980 |
+
if return_logits:
|
981 |
+
return prediction_scores[:, :-1, :].contiguous()
|
982 |
+
|
983 |
+
lm_loss = None
|
984 |
+
if labels is not None:
|
985 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
986 |
+
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
|
987 |
+
labels = labels[:, 1:].contiguous()
|
988 |
+
loss_fct = CrossEntropyLoss(reduction=reduction, label_smoothing=0.1)
|
989 |
+
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
990 |
+
if reduction=='none':
|
991 |
+
lm_loss = lm_loss.view(prediction_scores.size(0),-1).sum(1)
|
992 |
+
|
993 |
+
if not return_dict:
|
994 |
+
output = (prediction_scores,) + outputs[2:]
|
995 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
996 |
+
|
997 |
+
return CausalLMOutputWithCrossAttentions(
|
998 |
+
loss=lm_loss,
|
999 |
+
logits=prediction_scores,
|
1000 |
+
past_key_values=outputs.past_key_values,
|
1001 |
+
hidden_states=outputs.hidden_states,
|
1002 |
+
attentions=outputs.attentions,
|
1003 |
+
cross_attentions=outputs.cross_attentions,
|
1004 |
+
)
|
1005 |
+
|
1006 |
+
def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, **model_kwargs):
|
1007 |
+
input_shape = input_ids.shape
|
1008 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
1009 |
+
if attention_mask is None:
|
1010 |
+
attention_mask = input_ids.new_ones(input_shape)
|
1011 |
+
|
1012 |
+
# cut decoder_input_ids if past is used
|
1013 |
+
if past is not None:
|
1014 |
+
input_ids = input_ids[:, -1:]
|
1015 |
+
|
1016 |
+
return {
|
1017 |
+
"input_ids": input_ids,
|
1018 |
+
"attention_mask": attention_mask,
|
1019 |
+
"past_key_values": past,
|
1020 |
+
"encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None),
|
1021 |
+
"encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None),
|
1022 |
+
"is_decoder": True,
|
1023 |
+
}
|
1024 |
+
|
1025 |
+
def _reorder_cache(self, past, beam_idx):
|
1026 |
+
reordered_past = ()
|
1027 |
+
for layer_past in past:
|
1028 |
+
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
|
1029 |
+
return reordered_past
|
1030 |
+
|
1031 |
+
|
models/swin_transformer.py
ADDED
@@ -0,0 +1,654 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# Swin Transformer
|
3 |
+
# Copyright (c) 2021 Microsoft
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# Written by Ze Liu
|
6 |
+
# --------------------------------------------------------
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
from scipy import interpolate
|
10 |
+
|
11 |
+
import torch
|
12 |
+
import torch.nn as nn
|
13 |
+
import torch.utils.checkpoint as checkpoint
|
14 |
+
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
15 |
+
|
16 |
+
|
17 |
+
class Mlp(nn.Module):
|
18 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
19 |
+
super().__init__()
|
20 |
+
out_features = out_features or in_features
|
21 |
+
hidden_features = hidden_features or in_features
|
22 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
23 |
+
self.act = act_layer()
|
24 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
25 |
+
self.drop = nn.Dropout(drop)
|
26 |
+
|
27 |
+
def forward(self, x):
|
28 |
+
x = self.fc1(x)
|
29 |
+
x = self.act(x)
|
30 |
+
x = self.drop(x)
|
31 |
+
x = self.fc2(x)
|
32 |
+
x = self.drop(x)
|
33 |
+
return x
|
34 |
+
|
35 |
+
|
36 |
+
def window_partition(x, window_size):
|
37 |
+
"""
|
38 |
+
Args:
|
39 |
+
x: (B, H, W, C)
|
40 |
+
window_size (int): window size
|
41 |
+
|
42 |
+
Returns:
|
43 |
+
windows: (num_windows*B, window_size, window_size, C)
|
44 |
+
"""
|
45 |
+
B, H, W, C = x.shape
|
46 |
+
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
47 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
48 |
+
return windows
|
49 |
+
|
50 |
+
|
51 |
+
def window_reverse(windows, window_size, H, W):
|
52 |
+
"""
|
53 |
+
Args:
|
54 |
+
windows: (num_windows*B, window_size, window_size, C)
|
55 |
+
window_size (int): Window size
|
56 |
+
H (int): Height of image
|
57 |
+
W (int): Width of image
|
58 |
+
|
59 |
+
Returns:
|
60 |
+
x: (B, H, W, C)
|
61 |
+
"""
|
62 |
+
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
63 |
+
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
64 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
65 |
+
return x
|
66 |
+
|
67 |
+
|
68 |
+
class WindowAttention(nn.Module):
|
69 |
+
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
|
70 |
+
It supports both of shifted and non-shifted window.
|
71 |
+
|
72 |
+
Args:
|
73 |
+
dim (int): Number of input channels.
|
74 |
+
window_size (tuple[int]): The height and width of the window.
|
75 |
+
num_heads (int): Number of attention heads.
|
76 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
77 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
|
78 |
+
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
79 |
+
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
80 |
+
"""
|
81 |
+
|
82 |
+
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
|
83 |
+
|
84 |
+
super().__init__()
|
85 |
+
self.dim = dim
|
86 |
+
self.window_size = window_size # Wh, Ww
|
87 |
+
self.num_heads = num_heads
|
88 |
+
head_dim = dim // num_heads
|
89 |
+
self.scale = qk_scale or head_dim ** -0.5
|
90 |
+
|
91 |
+
# define a parameter table of relative position bias
|
92 |
+
self.relative_position_bias_table = nn.Parameter(
|
93 |
+
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
94 |
+
|
95 |
+
# get pair-wise relative position index for each token inside the window
|
96 |
+
coords_h = torch.arange(self.window_size[0])
|
97 |
+
coords_w = torch.arange(self.window_size[1])
|
98 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
99 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
100 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
101 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
102 |
+
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
103 |
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
104 |
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
105 |
+
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
106 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
107 |
+
|
108 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
109 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
110 |
+
self.proj = nn.Linear(dim, dim)
|
111 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
112 |
+
|
113 |
+
trunc_normal_(self.relative_position_bias_table, std=.02)
|
114 |
+
self.softmax = nn.Softmax(dim=-1)
|
115 |
+
|
116 |
+
def forward(self, x, mask=None):
|
117 |
+
"""
|
118 |
+
Args:
|
119 |
+
x: input features with shape of (num_windows*B, N, C)
|
120 |
+
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
121 |
+
"""
|
122 |
+
B_, N, C = x.shape
|
123 |
+
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
124 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
125 |
+
|
126 |
+
q = q * self.scale
|
127 |
+
attn = (q @ k.transpose(-2, -1))
|
128 |
+
|
129 |
+
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
130 |
+
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
|
131 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
132 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
133 |
+
|
134 |
+
if mask is not None:
|
135 |
+
nW = mask.shape[0]
|
136 |
+
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
137 |
+
attn = attn.view(-1, self.num_heads, N, N)
|
138 |
+
attn = self.softmax(attn)
|
139 |
+
else:
|
140 |
+
attn = self.softmax(attn)
|
141 |
+
|
142 |
+
attn = self.attn_drop(attn)
|
143 |
+
|
144 |
+
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
145 |
+
x = self.proj(x)
|
146 |
+
x = self.proj_drop(x)
|
147 |
+
return x
|
148 |
+
|
149 |
+
def extra_repr(self) -> str:
|
150 |
+
return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'
|
151 |
+
|
152 |
+
def flops(self, N):
|
153 |
+
# calculate flops for 1 window with token length of N
|
154 |
+
flops = 0
|
155 |
+
# qkv = self.qkv(x)
|
156 |
+
flops += N * self.dim * 3 * self.dim
|
157 |
+
# attn = (q @ k.transpose(-2, -1))
|
158 |
+
flops += self.num_heads * N * (self.dim // self.num_heads) * N
|
159 |
+
# x = (attn @ v)
|
160 |
+
flops += self.num_heads * N * N * (self.dim // self.num_heads)
|
161 |
+
# x = self.proj(x)
|
162 |
+
flops += N * self.dim * self.dim
|
163 |
+
return flops
|
164 |
+
|
165 |
+
|
166 |
+
class SwinTransformerBlock(nn.Module):
|
167 |
+
r""" Swin Transformer Block.
|
168 |
+
|
169 |
+
Args:
|
170 |
+
dim (int): Number of input channels.
|
171 |
+
input_resolution (tuple[int]): Input resulotion.
|
172 |
+
num_heads (int): Number of attention heads.
|
173 |
+
window_size (int): Window size.
|
174 |
+
shift_size (int): Shift size for SW-MSA.
|
175 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
176 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
177 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
178 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
179 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
180 |
+
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
181 |
+
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
182 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
183 |
+
"""
|
184 |
+
|
185 |
+
def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0,
|
186 |
+
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
|
187 |
+
act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
188 |
+
super().__init__()
|
189 |
+
self.dim = dim
|
190 |
+
self.input_resolution = input_resolution
|
191 |
+
self.num_heads = num_heads
|
192 |
+
self.window_size = window_size
|
193 |
+
self.shift_size = shift_size
|
194 |
+
self.mlp_ratio = mlp_ratio
|
195 |
+
if min(self.input_resolution) <= self.window_size:
|
196 |
+
# if window size is larger than input resolution, we don't partition windows
|
197 |
+
self.shift_size = 0
|
198 |
+
self.window_size = min(self.input_resolution)
|
199 |
+
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
|
200 |
+
|
201 |
+
self.norm1 = norm_layer(dim)
|
202 |
+
self.attn = WindowAttention(
|
203 |
+
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
|
204 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
205 |
+
|
206 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
207 |
+
self.norm2 = norm_layer(dim)
|
208 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
209 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
210 |
+
|
211 |
+
if self.shift_size > 0:
|
212 |
+
# calculate attention mask for SW-MSA
|
213 |
+
H, W = self.input_resolution
|
214 |
+
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
|
215 |
+
h_slices = (slice(0, -self.window_size),
|
216 |
+
slice(-self.window_size, -self.shift_size),
|
217 |
+
slice(-self.shift_size, None))
|
218 |
+
w_slices = (slice(0, -self.window_size),
|
219 |
+
slice(-self.window_size, -self.shift_size),
|
220 |
+
slice(-self.shift_size, None))
|
221 |
+
cnt = 0
|
222 |
+
for h in h_slices:
|
223 |
+
for w in w_slices:
|
224 |
+
img_mask[:, h, w, :] = cnt
|
225 |
+
cnt += 1
|
226 |
+
|
227 |
+
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
|
228 |
+
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
229 |
+
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
230 |
+
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
231 |
+
else:
|
232 |
+
attn_mask = None
|
233 |
+
|
234 |
+
self.register_buffer("attn_mask", attn_mask)
|
235 |
+
|
236 |
+
def forward(self, x):
|
237 |
+
H, W = self.input_resolution
|
238 |
+
B, L, C = x.shape
|
239 |
+
assert L == H * W, "input feature has wrong size"
|
240 |
+
|
241 |
+
shortcut = x
|
242 |
+
x = self.norm1(x)
|
243 |
+
x = x.view(B, H, W, C)
|
244 |
+
|
245 |
+
# cyclic shift
|
246 |
+
if self.shift_size > 0:
|
247 |
+
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
248 |
+
else:
|
249 |
+
shifted_x = x
|
250 |
+
|
251 |
+
# partition windows
|
252 |
+
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
|
253 |
+
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
|
254 |
+
|
255 |
+
# W-MSA/SW-MSA
|
256 |
+
attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
|
257 |
+
|
258 |
+
# merge windows
|
259 |
+
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
260 |
+
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
|
261 |
+
|
262 |
+
# reverse cyclic shift
|
263 |
+
if self.shift_size > 0:
|
264 |
+
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
265 |
+
else:
|
266 |
+
x = shifted_x
|
267 |
+
x = x.view(B, H * W, C)
|
268 |
+
|
269 |
+
# FFN
|
270 |
+
x = shortcut + self.drop_path(x)
|
271 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
272 |
+
|
273 |
+
return x
|
274 |
+
|
275 |
+
def extra_repr(self) -> str:
|
276 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
|
277 |
+
f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"
|
278 |
+
|
279 |
+
def flops(self):
|
280 |
+
flops = 0
|
281 |
+
H, W = self.input_resolution
|
282 |
+
# norm1
|
283 |
+
flops += self.dim * H * W
|
284 |
+
# W-MSA/SW-MSA
|
285 |
+
nW = H * W / self.window_size / self.window_size
|
286 |
+
flops += nW * self.attn.flops(self.window_size * self.window_size)
|
287 |
+
# mlp
|
288 |
+
flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
|
289 |
+
# norm2
|
290 |
+
flops += self.dim * H * W
|
291 |
+
return flops
|
292 |
+
|
293 |
+
|
294 |
+
class PatchMerging(nn.Module):
|
295 |
+
r""" Patch Merging Layer.
|
296 |
+
|
297 |
+
Args:
|
298 |
+
input_resolution (tuple[int]): Resolution of input feature.
|
299 |
+
dim (int): Number of input channels.
|
300 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
301 |
+
"""
|
302 |
+
|
303 |
+
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
|
304 |
+
super().__init__()
|
305 |
+
self.input_resolution = input_resolution
|
306 |
+
self.dim = dim
|
307 |
+
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
308 |
+
self.norm = norm_layer(4 * dim)
|
309 |
+
|
310 |
+
def forward(self, x):
|
311 |
+
"""
|
312 |
+
x: B, H*W, C
|
313 |
+
"""
|
314 |
+
H, W = self.input_resolution
|
315 |
+
B, L, C = x.shape
|
316 |
+
assert L == H * W, "input feature has wrong size"
|
317 |
+
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
|
318 |
+
|
319 |
+
x = x.view(B, H, W, C)
|
320 |
+
|
321 |
+
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
|
322 |
+
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
|
323 |
+
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
324 |
+
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
325 |
+
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
326 |
+
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
|
327 |
+
|
328 |
+
x = self.norm(x)
|
329 |
+
x = self.reduction(x)
|
330 |
+
|
331 |
+
return x
|
332 |
+
|
333 |
+
def extra_repr(self) -> str:
|
334 |
+
return f"input_resolution={self.input_resolution}, dim={self.dim}"
|
335 |
+
|
336 |
+
def flops(self):
|
337 |
+
H, W = self.input_resolution
|
338 |
+
flops = H * W * self.dim
|
339 |
+
flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim
|
340 |
+
return flops
|
341 |
+
|
342 |
+
|
343 |
+
class BasicLayer(nn.Module):
|
344 |
+
""" A basic Swin Transformer layer for one stage.
|
345 |
+
|
346 |
+
Args:
|
347 |
+
dim (int): Number of input channels.
|
348 |
+
input_resolution (tuple[int]): Input resolution.
|
349 |
+
depth (int): Number of blocks.
|
350 |
+
num_heads (int): Number of attention heads.
|
351 |
+
window_size (int): Local window size.
|
352 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
353 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
354 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
355 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
356 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
357 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
358 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
359 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
360 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
361 |
+
"""
|
362 |
+
|
363 |
+
def __init__(self, dim, input_resolution, depth, num_heads, window_size,
|
364 |
+
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
|
365 |
+
drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False):
|
366 |
+
|
367 |
+
super().__init__()
|
368 |
+
self.dim = dim
|
369 |
+
self.input_resolution = input_resolution
|
370 |
+
self.depth = depth
|
371 |
+
self.use_checkpoint = use_checkpoint
|
372 |
+
|
373 |
+
# build blocks
|
374 |
+
self.blocks = nn.ModuleList([
|
375 |
+
SwinTransformerBlock(dim=dim, input_resolution=input_resolution,
|
376 |
+
num_heads=num_heads, window_size=window_size,
|
377 |
+
shift_size=0 if (i % 2 == 0) else window_size // 2,
|
378 |
+
mlp_ratio=mlp_ratio,
|
379 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale,
|
380 |
+
drop=drop, attn_drop=attn_drop,
|
381 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
382 |
+
norm_layer=norm_layer)
|
383 |
+
for i in range(depth)])
|
384 |
+
|
385 |
+
# patch merging layer
|
386 |
+
if downsample is not None:
|
387 |
+
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
|
388 |
+
else:
|
389 |
+
self.downsample = None
|
390 |
+
|
391 |
+
def forward(self, x):
|
392 |
+
for blk in self.blocks:
|
393 |
+
if self.use_checkpoint:
|
394 |
+
x = checkpoint.checkpoint(blk, x)
|
395 |
+
else:
|
396 |
+
x = blk(x)
|
397 |
+
if self.downsample is not None:
|
398 |
+
x = self.downsample(x)
|
399 |
+
return x
|
400 |
+
|
401 |
+
def extra_repr(self) -> str:
|
402 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
|
403 |
+
|
404 |
+
def flops(self):
|
405 |
+
flops = 0
|
406 |
+
for blk in self.blocks:
|
407 |
+
flops += blk.flops()
|
408 |
+
if self.downsample is not None:
|
409 |
+
flops += self.downsample.flops()
|
410 |
+
return flops
|
411 |
+
|
412 |
+
|
413 |
+
class PatchEmbed(nn.Module):
|
414 |
+
r""" Image to Patch Embedding
|
415 |
+
|
416 |
+
Args:
|
417 |
+
img_size (int): Image size. Default: 224.
|
418 |
+
patch_size (int): Patch token size. Default: 4.
|
419 |
+
in_chans (int): Number of input image channels. Default: 3.
|
420 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
421 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
422 |
+
"""
|
423 |
+
|
424 |
+
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
425 |
+
super().__init__()
|
426 |
+
img_size = to_2tuple(img_size)
|
427 |
+
patch_size = to_2tuple(patch_size)
|
428 |
+
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
|
429 |
+
self.img_size = img_size
|
430 |
+
self.patch_size = patch_size
|
431 |
+
self.patches_resolution = patches_resolution
|
432 |
+
self.num_patches = patches_resolution[0] * patches_resolution[1]
|
433 |
+
|
434 |
+
self.in_chans = in_chans
|
435 |
+
self.embed_dim = embed_dim
|
436 |
+
|
437 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
438 |
+
if norm_layer is not None:
|
439 |
+
self.norm = norm_layer(embed_dim)
|
440 |
+
else:
|
441 |
+
self.norm = None
|
442 |
+
|
443 |
+
def forward(self, x):
|
444 |
+
B, C, H, W = x.shape
|
445 |
+
# FIXME look at relaxing size constraints
|
446 |
+
assert H == self.img_size[0] and W == self.img_size[1], \
|
447 |
+
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
448 |
+
x = self.proj(x).flatten(2).transpose(1, 2) # B Ph*Pw C
|
449 |
+
if self.norm is not None:
|
450 |
+
x = self.norm(x)
|
451 |
+
return x
|
452 |
+
|
453 |
+
def flops(self):
|
454 |
+
Ho, Wo = self.patches_resolution
|
455 |
+
flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
|
456 |
+
if self.norm is not None:
|
457 |
+
flops += Ho * Wo * self.embed_dim
|
458 |
+
return flops
|
459 |
+
|
460 |
+
|
461 |
+
class SwinTransformer(nn.Module):
|
462 |
+
r""" Swin Transformer
|
463 |
+
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
|
464 |
+
https://arxiv.org/pdf/2103.14030
|
465 |
+
|
466 |
+
Args:
|
467 |
+
img_size (int | tuple(int)): Input image size. Default 224
|
468 |
+
patch_size (int | tuple(int)): Patch size. Default: 4
|
469 |
+
in_chans (int): Number of input image channels. Default: 3
|
470 |
+
num_classes (int): Number of classes for classification head. Default: 1000
|
471 |
+
embed_dim (int): Patch embedding dimension. Default: 96
|
472 |
+
depths (tuple(int)): Depth of each Swin Transformer layer.
|
473 |
+
num_heads (tuple(int)): Number of attention heads in different layers.
|
474 |
+
window_size (int): Window size. Default: 7
|
475 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
|
476 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
477 |
+
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
|
478 |
+
drop_rate (float): Dropout rate. Default: 0
|
479 |
+
attn_drop_rate (float): Attention dropout rate. Default: 0
|
480 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.1
|
481 |
+
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
482 |
+
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
|
483 |
+
patch_norm (bool): If True, add normalization after patch embedding. Default: True
|
484 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
|
485 |
+
"""
|
486 |
+
|
487 |
+
def __init__(self, img_size=224, patch_size=4, in_chans=3, num_classes=1000,
|
488 |
+
embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24],
|
489 |
+
window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None,
|
490 |
+
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
|
491 |
+
norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
|
492 |
+
use_checkpoint=False, **kwargs):
|
493 |
+
super().__init__()
|
494 |
+
|
495 |
+
self.num_classes = num_classes
|
496 |
+
self.num_layers = len(depths)
|
497 |
+
self.embed_dim = embed_dim
|
498 |
+
self.ape = ape
|
499 |
+
self.patch_norm = patch_norm
|
500 |
+
self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))
|
501 |
+
self.mlp_ratio = mlp_ratio
|
502 |
+
|
503 |
+
# split image into non-overlapping patches
|
504 |
+
self.patch_embed = PatchEmbed(
|
505 |
+
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
|
506 |
+
norm_layer=norm_layer if self.patch_norm else None)
|
507 |
+
num_patches = self.patch_embed.num_patches
|
508 |
+
patches_resolution = self.patch_embed.patches_resolution
|
509 |
+
self.patches_resolution = patches_resolution
|
510 |
+
|
511 |
+
# absolute position embedding
|
512 |
+
if self.ape:
|
513 |
+
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
|
514 |
+
trunc_normal_(self.absolute_pos_embed, std=.02)
|
515 |
+
|
516 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
517 |
+
|
518 |
+
# stochastic depth
|
519 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
|
520 |
+
|
521 |
+
# build layers
|
522 |
+
self.layers = nn.ModuleList()
|
523 |
+
for i_layer in range(self.num_layers):
|
524 |
+
layer = BasicLayer(dim=int(embed_dim * 2 ** i_layer),
|
525 |
+
input_resolution=(patches_resolution[0] // (2 ** i_layer),
|
526 |
+
patches_resolution[1] // (2 ** i_layer)),
|
527 |
+
depth=depths[i_layer],
|
528 |
+
num_heads=num_heads[i_layer],
|
529 |
+
window_size=window_size,
|
530 |
+
mlp_ratio=self.mlp_ratio,
|
531 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale,
|
532 |
+
drop=drop_rate, attn_drop=attn_drop_rate,
|
533 |
+
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
|
534 |
+
norm_layer=norm_layer,
|
535 |
+
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
|
536 |
+
use_checkpoint=use_checkpoint)
|
537 |
+
self.layers.append(layer)
|
538 |
+
|
539 |
+
self.norm = norm_layer(self.num_features)
|
540 |
+
self.avgpool = nn.AdaptiveAvgPool1d(1)
|
541 |
+
# self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
|
542 |
+
|
543 |
+
self.apply(self._init_weights)
|
544 |
+
|
545 |
+
def _init_weights(self, m):
|
546 |
+
if isinstance(m, nn.Linear):
|
547 |
+
trunc_normal_(m.weight, std=.02)
|
548 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
549 |
+
nn.init.constant_(m.bias, 0)
|
550 |
+
elif isinstance(m, nn.LayerNorm):
|
551 |
+
nn.init.constant_(m.bias, 0)
|
552 |
+
nn.init.constant_(m.weight, 1.0)
|
553 |
+
|
554 |
+
@torch.jit.ignore
|
555 |
+
def no_weight_decay(self):
|
556 |
+
return {'absolute_pos_embed'}
|
557 |
+
|
558 |
+
@torch.jit.ignore
|
559 |
+
def no_weight_decay_keywords(self):
|
560 |
+
return {'relative_position_bias_table'}
|
561 |
+
|
562 |
+
def forward(self, x, idx_to_group_img=None, image_atts=None, **kwargs):
|
563 |
+
x = self.patch_embed(x)
|
564 |
+
if self.ape:
|
565 |
+
x = x + self.absolute_pos_embed
|
566 |
+
x = self.pos_drop(x)
|
567 |
+
|
568 |
+
for layer in self.layers:
|
569 |
+
x = layer(x)
|
570 |
+
|
571 |
+
x = self.norm(x) # B L C
|
572 |
+
|
573 |
+
x_cls = self.avgpool(x.transpose(1, 2)) # B C 1
|
574 |
+
|
575 |
+
if idx_to_group_img is None:
|
576 |
+
return torch.cat([x_cls.transpose(1, 2), x], dim=1)
|
577 |
+
else:
|
578 |
+
x_bs = torch.gather(x, dim=0, index=idx_to_group_img.view(-1, 1, 1).expand(-1, x.shape[1], x.shape[2]))
|
579 |
+
weights = image_atts[:, 1:].unsqueeze(2) # B L 1
|
580 |
+
x_bs_cls = torch.sum((weights * x_bs).transpose(1, 2), dim=-1, keepdim=True) # B C 1
|
581 |
+
x_bs_cls = x_bs_cls / torch.sum(weights.transpose(1, 2), dim=-1, keepdim=True) # avgpool
|
582 |
+
|
583 |
+
return torch.cat([x_bs_cls.transpose(1, 2), x_bs], dim=1), \
|
584 |
+
torch.cat([x_cls.transpose(1, 2), x], dim=1)
|
585 |
+
|
586 |
+
def flops(self):
|
587 |
+
flops = 0
|
588 |
+
flops += self.patch_embed.flops()
|
589 |
+
for i, layer in enumerate(self.layers):
|
590 |
+
flops += layer.flops()
|
591 |
+
flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers)
|
592 |
+
flops += self.num_features * self.num_classes
|
593 |
+
return flops
|
594 |
+
|
595 |
+
|
596 |
+
def interpolate_relative_pos_embed(rel_pos_bias, dst_num_pos, param_name=''):
|
597 |
+
# from: https://github.com/microsoft/unilm/blob/8a0a1c1f4e7326938ea7580a00d56d7f17d65612/beit/run_class_finetuning.py#L348
|
598 |
+
|
599 |
+
# rel_pos_bias: relative_position_bias_table
|
600 |
+
src_num_pos, num_attn_heads = rel_pos_bias.size()
|
601 |
+
|
602 |
+
num_extra_tokens = 0
|
603 |
+
src_size = int((src_num_pos - num_extra_tokens) ** 0.5)
|
604 |
+
dst_size = int((dst_num_pos - num_extra_tokens) ** 0.5)
|
605 |
+
if src_size != dst_size:
|
606 |
+
print("Position interpolate %s from %dx%d to %dx%d" % (param_name, src_size, src_size, dst_size, dst_size))
|
607 |
+
|
608 |
+
# extra_tokens = rel_pos_bias[-num_extra_tokens:, :]
|
609 |
+
# rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :]
|
610 |
+
|
611 |
+
def geometric_progression(a, r, n):
|
612 |
+
return a * (1.0 - r ** n) / (1.0 - r)
|
613 |
+
|
614 |
+
left, right = 1.01, 1.5
|
615 |
+
while right - left > 1e-6:
|
616 |
+
q = (left + right) / 2.0
|
617 |
+
gp = geometric_progression(1, q, src_size // 2)
|
618 |
+
if gp > dst_size // 2:
|
619 |
+
right = q
|
620 |
+
else:
|
621 |
+
left = q
|
622 |
+
|
623 |
+
# if q > 1.090307:
|
624 |
+
# q = 1.090307
|
625 |
+
|
626 |
+
dis = []
|
627 |
+
cur = 1
|
628 |
+
for i in range(src_size // 2):
|
629 |
+
dis.append(cur)
|
630 |
+
cur += q ** (i + 1)
|
631 |
+
|
632 |
+
r_ids = [-_ for _ in reversed(dis)]
|
633 |
+
|
634 |
+
x = r_ids + [0] + dis
|
635 |
+
y = r_ids + [0] + dis
|
636 |
+
|
637 |
+
t = dst_size // 2.0
|
638 |
+
dx = np.arange(-t, t + 0.1, 1.0)
|
639 |
+
dy = np.arange(-t, t + 0.1, 1.0)
|
640 |
+
|
641 |
+
# print("Original positions = %s" % str(x))
|
642 |
+
# print("Target positions = %s" % str(dx))
|
643 |
+
|
644 |
+
all_rel_pos_bias = []
|
645 |
+
|
646 |
+
for i in range(num_attn_heads):
|
647 |
+
z = rel_pos_bias[:, i].view(src_size, src_size).float().numpy()
|
648 |
+
f = interpolate.interp2d(x, y, z, kind='cubic')
|
649 |
+
all_rel_pos_bias.append(
|
650 |
+
torch.Tensor(f(dx, dy)).contiguous().view(-1, 1).to(rel_pos_bias.device))
|
651 |
+
|
652 |
+
rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1)
|
653 |
+
|
654 |
+
return rel_pos_bias
|
models/tag2text.py
ADDED
@@ -0,0 +1,415 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
* Tag2Text
|
3 |
+
* Written by Xinyu Huang
|
4 |
+
'''
|
5 |
+
import warnings
|
6 |
+
warnings.filterwarnings("ignore")
|
7 |
+
|
8 |
+
from models.vit import VisionTransformer, interpolate_pos_embed
|
9 |
+
from models.swin_transformer import SwinTransformer, interpolate_relative_pos_embed
|
10 |
+
from models.med import BertConfig, BertModel, BertLMHeadModel
|
11 |
+
from transformers import BertTokenizer
|
12 |
+
|
13 |
+
import torch
|
14 |
+
from torch import nn
|
15 |
+
import torch.nn.functional as F
|
16 |
+
|
17 |
+
import os
|
18 |
+
from urllib.parse import urlparse
|
19 |
+
from timm.models.hub import download_cached_file
|
20 |
+
from data.tag_class import tra_array
|
21 |
+
import json
|
22 |
+
import math
|
23 |
+
import numpy as np
|
24 |
+
|
25 |
+
def read_json(rpath):
|
26 |
+
with open(rpath, 'r') as f:
|
27 |
+
return json.load(f)
|
28 |
+
|
29 |
+
class Tag2Text_Caption(nn.Module):
|
30 |
+
def __init__(self,
|
31 |
+
med_config = 'configs/med_config.json',
|
32 |
+
image_size = 384,
|
33 |
+
vit = 'base',
|
34 |
+
vit_grad_ckpt = False,
|
35 |
+
vit_ckpt_layer = 0,
|
36 |
+
prompt = 'a picture of ',
|
37 |
+
config = None,
|
38 |
+
threshold = 0.2,
|
39 |
+
):
|
40 |
+
"""
|
41 |
+
Args:
|
42 |
+
med_config (str): path for the mixture of encoder-decoder model's configuration file
|
43 |
+
image_size (int): input image size
|
44 |
+
vit (str): model size of vision transformer
|
45 |
+
"""
|
46 |
+
super().__init__()
|
47 |
+
|
48 |
+
if vit=='swin_b':
|
49 |
+
if image_size == 224:
|
50 |
+
vision_config_path = 'configs/swin/config_swinB_224.json'
|
51 |
+
elif image_size == 384:
|
52 |
+
vision_config_path = 'configs/swin/config_swinB_384.json'
|
53 |
+
vision_config = read_json(vision_config_path)
|
54 |
+
assert image_size == vision_config['image_res']
|
55 |
+
# assert config['patch_size'] == 32
|
56 |
+
vision_width = vision_config['vision_width']
|
57 |
+
|
58 |
+
self.visual_encoder = SwinTransformer(img_size=vision_config['image_res'],
|
59 |
+
patch_size=4,
|
60 |
+
in_chans=3,
|
61 |
+
embed_dim=vision_config['embed_dim'],
|
62 |
+
depths=vision_config['depths'],
|
63 |
+
num_heads=vision_config['num_heads'],
|
64 |
+
window_size=vision_config['window_size'],
|
65 |
+
mlp_ratio=4.,
|
66 |
+
qkv_bias=True,
|
67 |
+
drop_rate=0.0,
|
68 |
+
drop_path_rate=0.1,
|
69 |
+
ape=False,
|
70 |
+
patch_norm=True,
|
71 |
+
use_checkpoint=False)
|
72 |
+
|
73 |
+
else:
|
74 |
+
self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer)
|
75 |
+
|
76 |
+
|
77 |
+
self.tokenizer = init_tokenizer()
|
78 |
+
|
79 |
+
# create the decoder
|
80 |
+
decoder_config = BertConfig.from_json_file(med_config)
|
81 |
+
decoder_config.encoder_width = 768
|
82 |
+
self.text_decoder = BertLMHeadModel(config=decoder_config)
|
83 |
+
|
84 |
+
# create encoder
|
85 |
+
encoder_config = BertConfig.from_json_file(med_config)
|
86 |
+
encoder_config.encoder_width = vision_width
|
87 |
+
self.tag_encoder = BertModel(config=encoder_config, add_pooling_layer=False)
|
88 |
+
|
89 |
+
self.prompt = prompt
|
90 |
+
self.prompt_length = len(self.tokenizer(self.prompt).input_ids)-1
|
91 |
+
|
92 |
+
self.threshold = threshold
|
93 |
+
num_features = 768
|
94 |
+
self.num_class = config['class_num']
|
95 |
+
|
96 |
+
q2l_config = BertConfig.from_json_file('configs/q2l_config.json')
|
97 |
+
q2l_config.encoder_width = vision_width
|
98 |
+
self.vision_multi = BertModel.from_pretrained('bert-base-uncased',config=q2l_config, add_pooling_layer=False)
|
99 |
+
self.vision_multi.resize_token_embeddings(len(self.tokenizer))
|
100 |
+
self.label_embed = nn.Embedding(self.num_class, q2l_config.hidden_size)
|
101 |
+
self.fc = GroupWiseLinear(self.num_class, num_features, bias=True)
|
102 |
+
self.del_selfattention()
|
103 |
+
|
104 |
+
tie_encoder_decoder_weights(self.tag_encoder,self.vision_multi,'',' ')
|
105 |
+
self.tag_array = tra_array
|
106 |
+
|
107 |
+
def del_selfattention(self):
|
108 |
+
del self.vision_multi.embeddings
|
109 |
+
for layer in self.vision_multi.encoder.layer:
|
110 |
+
del layer.attention
|
111 |
+
|
112 |
+
def generate(self, image, sample=False, num_beams=3, max_length=30, min_length=10, top_p=0.9, repetition_penalty=1.0, tag_input = None, return_tag_predict = False):
|
113 |
+
image_embeds = self.visual_encoder(image)
|
114 |
+
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
|
115 |
+
|
116 |
+
#==============generate tag==============#
|
117 |
+
if tag_input == None:
|
118 |
+
image_spatial_embeds = image_embeds[:,1:,:]
|
119 |
+
image_cls_embeds = image_embeds[:,0,:]
|
120 |
+
|
121 |
+
bs = image_spatial_embeds.shape[0]
|
122 |
+
label_embed = self.label_embed.weight.unsqueeze(0).repeat(bs,1,1)
|
123 |
+
mlr_tagembedding = self.vision_multi(encoder_embeds = label_embed,
|
124 |
+
encoder_hidden_states = image_embeds,
|
125 |
+
encoder_attention_mask = image_atts,
|
126 |
+
return_dict = False,
|
127 |
+
mode = 'mlr',
|
128 |
+
)
|
129 |
+
|
130 |
+
logits = self.fc(mlr_tagembedding[0])
|
131 |
+
|
132 |
+
targets = torch.where(torch.sigmoid(logits) > self.threshold , torch.tensor(1.0).to(image.device), torch.zeros(self.num_class).to(image.device))
|
133 |
+
|
134 |
+
tag = targets.cpu().numpy()
|
135 |
+
bs = image.size(0)
|
136 |
+
tag_input = []
|
137 |
+
for b in range(bs):
|
138 |
+
index = np.argwhere(tag[b] == 1)
|
139 |
+
token = self.tag_array[index].squeeze(axis = 1)
|
140 |
+
tag_input.append(' | '.join(token))
|
141 |
+
#========================================#
|
142 |
+
|
143 |
+
if not sample:
|
144 |
+
image_embeds = image_embeds.repeat_interleave(num_beams,dim=0)
|
145 |
+
tag_input_temp = []
|
146 |
+
for tag in tag_input:
|
147 |
+
for i in range(num_beams):
|
148 |
+
tag_input_temp.append(tag)
|
149 |
+
tag_input = tag_input_temp
|
150 |
+
|
151 |
+
|
152 |
+
tag_input_tokenzier = self.tokenizer(tag_input, padding='max_length', truncation=True, max_length=40,
|
153 |
+
return_tensors="pt").to(image.device)
|
154 |
+
encoder_input_ids = tag_input_tokenzier.input_ids
|
155 |
+
encoder_input_ids[:,0] = self.tokenizer.enc_token_id
|
156 |
+
|
157 |
+
output_tagembedding = self.tag_encoder(encoder_input_ids,
|
158 |
+
attention_mask = tag_input_tokenzier.attention_mask,
|
159 |
+
encoder_hidden_states = image_embeds,
|
160 |
+
encoder_attention_mask = image_atts,
|
161 |
+
return_dict = True,
|
162 |
+
)
|
163 |
+
|
164 |
+
prompt = [self.prompt] * image.size(0)
|
165 |
+
input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to(image.device)
|
166 |
+
input_ids[:,0] = self.tokenizer.bos_token_id
|
167 |
+
input_ids = input_ids[:, :-1]
|
168 |
+
|
169 |
+
if sample:
|
170 |
+
#nucleus sampling
|
171 |
+
model_kwargs = {"encoder_hidden_states": output_tagembedding.last_hidden_state, "encoder_attention_mask":None}
|
172 |
+
outputs = self.text_decoder.generate(input_ids=input_ids,
|
173 |
+
max_length=max_length,
|
174 |
+
min_length=min_length,
|
175 |
+
do_sample=True,
|
176 |
+
top_p=top_p,
|
177 |
+
num_return_sequences=1,
|
178 |
+
eos_token_id=self.tokenizer.sep_token_id,
|
179 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
180 |
+
repetition_penalty=1.1,
|
181 |
+
**model_kwargs)
|
182 |
+
else:
|
183 |
+
#beam search
|
184 |
+
model_kwargs = {"encoder_hidden_states": output_tagembedding.last_hidden_state, "encoder_attention_mask":None}
|
185 |
+
outputs = self.text_decoder.generate(input_ids=input_ids,
|
186 |
+
max_length=max_length,
|
187 |
+
min_length=min_length,
|
188 |
+
num_beams=num_beams,
|
189 |
+
eos_token_id=self.tokenizer.sep_token_id,
|
190 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
191 |
+
repetition_penalty=repetition_penalty,
|
192 |
+
**model_kwargs)
|
193 |
+
|
194 |
+
captions = []
|
195 |
+
for output in outputs:
|
196 |
+
caption = self.tokenizer.decode(output, skip_special_tokens=True)
|
197 |
+
captions.append(caption[len(self.prompt):])
|
198 |
+
if return_tag_predict == True:
|
199 |
+
if sample:
|
200 |
+
return captions, tag_input
|
201 |
+
else:
|
202 |
+
return captions, tag_input[0:int(len(tag_input)/num_beams)]
|
203 |
+
return captions
|
204 |
+
|
205 |
+
|
206 |
+
def tag2text_caption(pretrained='',**kwargs):
|
207 |
+
model = Tag2Text_Caption(**kwargs)
|
208 |
+
if pretrained:
|
209 |
+
if kwargs['vit'] == 'swin_b':
|
210 |
+
model,msg = load_checkpoint_swinbase(model,pretrained,kwargs)
|
211 |
+
else:
|
212 |
+
model,msg = load_checkpoint(model,pretrained)
|
213 |
+
print('vit:',kwargs['vit'])
|
214 |
+
print('msg_v2',msg)
|
215 |
+
return model
|
216 |
+
|
217 |
+
|
218 |
+
from typing import List
|
219 |
+
def tie_encoder_decoder_weights(encoder: nn.Module, decoder: nn.Module, base_model_prefix: str, skip_key:str):
|
220 |
+
uninitialized_encoder_weights: List[str] = []
|
221 |
+
if decoder.__class__ != encoder.__class__:
|
222 |
+
logger.info(
|
223 |
+
f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder weights are correctly initialized."
|
224 |
+
)
|
225 |
+
|
226 |
+
def tie_encoder_to_decoder_recursively(
|
227 |
+
decoder_pointer: nn.Module,
|
228 |
+
encoder_pointer: nn.Module,
|
229 |
+
module_name: str,
|
230 |
+
uninitialized_encoder_weights: List[str],
|
231 |
+
skip_key: str,
|
232 |
+
depth=0,
|
233 |
+
):
|
234 |
+
assert isinstance(decoder_pointer, nn.Module) and isinstance(
|
235 |
+
encoder_pointer, nn.Module
|
236 |
+
), f"{decoder_pointer} and {encoder_pointer} have to be of type torch.nn.Module"
|
237 |
+
if hasattr(decoder_pointer, "weight") and skip_key not in module_name:
|
238 |
+
assert hasattr(encoder_pointer, "weight")
|
239 |
+
encoder_pointer.weight = decoder_pointer.weight
|
240 |
+
if hasattr(decoder_pointer, "bias"):
|
241 |
+
assert hasattr(encoder_pointer, "bias")
|
242 |
+
encoder_pointer.bias = decoder_pointer.bias
|
243 |
+
print(module_name+' is tied')
|
244 |
+
return
|
245 |
+
|
246 |
+
encoder_modules = encoder_pointer._modules
|
247 |
+
decoder_modules = decoder_pointer._modules
|
248 |
+
if len(decoder_modules) > 0:
|
249 |
+
assert (
|
250 |
+
len(encoder_modules) > 0
|
251 |
+
), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}"
|
252 |
+
|
253 |
+
all_encoder_weights = set([module_name + "/" + sub_name for sub_name in encoder_modules.keys()])
|
254 |
+
encoder_layer_pos = 0
|
255 |
+
for name, module in decoder_modules.items():
|
256 |
+
if name.isdigit():
|
257 |
+
encoder_name = str(int(name) + encoder_layer_pos)
|
258 |
+
decoder_name = name
|
259 |
+
if not isinstance(decoder_modules[decoder_name], type(encoder_modules[encoder_name])) and len(
|
260 |
+
encoder_modules
|
261 |
+
) != len(decoder_modules):
|
262 |
+
# this can happen if the name corresponds to the position in a list module list of layers
|
263 |
+
# in this case the decoder has added a cross-attention that the encoder does not have
|
264 |
+
# thus skip this step and subtract one layer pos from encoder
|
265 |
+
encoder_layer_pos -= 1
|
266 |
+
continue
|
267 |
+
elif name not in encoder_modules:
|
268 |
+
continue
|
269 |
+
elif depth > 500:
|
270 |
+
raise ValueError(
|
271 |
+
"Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is a circular dependency between two or more `nn.Modules` of your model."
|
272 |
+
)
|
273 |
+
else:
|
274 |
+
decoder_name = encoder_name = name
|
275 |
+
tie_encoder_to_decoder_recursively(
|
276 |
+
decoder_modules[decoder_name],
|
277 |
+
encoder_modules[encoder_name],
|
278 |
+
module_name + "/" + name,
|
279 |
+
uninitialized_encoder_weights,
|
280 |
+
skip_key,
|
281 |
+
depth=depth + 1,
|
282 |
+
)
|
283 |
+
all_encoder_weights.remove(module_name + "/" + encoder_name)
|
284 |
+
|
285 |
+
uninitialized_encoder_weights += list(all_encoder_weights)
|
286 |
+
|
287 |
+
# tie weights recursively
|
288 |
+
tie_encoder_to_decoder_recursively(decoder, encoder, base_model_prefix, uninitialized_encoder_weights, skip_key)
|
289 |
+
|
290 |
+
|
291 |
+
class GroupWiseLinear(nn.Module):
|
292 |
+
# could be changed to:
|
293 |
+
# output = torch.einsum('ijk,zjk->ij', x, self.W)
|
294 |
+
# or output = torch.einsum('ijk,jk->ij', x, self.W[0])
|
295 |
+
def __init__(self, num_class, hidden_dim, bias=True):
|
296 |
+
super().__init__()
|
297 |
+
self.num_class = num_class
|
298 |
+
self.hidden_dim = hidden_dim
|
299 |
+
self.bias = bias
|
300 |
+
|
301 |
+
self.W = nn.Parameter(torch.Tensor(1, num_class, hidden_dim))
|
302 |
+
if bias:
|
303 |
+
self.b = nn.Parameter(torch.Tensor(1, num_class))
|
304 |
+
self.reset_parameters()
|
305 |
+
|
306 |
+
def reset_parameters(self):
|
307 |
+
stdv = 1. / math.sqrt(self.W.size(2))
|
308 |
+
for i in range(self.num_class):
|
309 |
+
self.W[0][i].data.uniform_(-stdv, stdv)
|
310 |
+
if self.bias:
|
311 |
+
for i in range(self.num_class):
|
312 |
+
self.b[0][i].data.uniform_(-stdv, stdv)
|
313 |
+
|
314 |
+
def forward(self, x):
|
315 |
+
# x: B,K,d
|
316 |
+
x = (self.W * x).sum(-1)
|
317 |
+
if self.bias:
|
318 |
+
x = x + self.b
|
319 |
+
return x
|
320 |
+
|
321 |
+
|
322 |
+
def init_tokenizer():
|
323 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
324 |
+
tokenizer.add_special_tokens({'bos_token':'[DEC]'})
|
325 |
+
tokenizer.add_special_tokens({'additional_special_tokens':['[ENC]']})
|
326 |
+
tokenizer.enc_token_id = tokenizer.additional_special_tokens_ids[0]
|
327 |
+
return tokenizer
|
328 |
+
|
329 |
+
|
330 |
+
def create_vit(vit, image_size, use_grad_checkpointing=False, ckpt_layer=0, drop_path_rate=0):
|
331 |
+
|
332 |
+
assert vit in ['base', 'large'], "vit parameter must be base or large"
|
333 |
+
if vit=='base':
|
334 |
+
vision_width = 768
|
335 |
+
visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=12,
|
336 |
+
num_heads=12, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer,
|
337 |
+
drop_path_rate=0 or drop_path_rate
|
338 |
+
)
|
339 |
+
elif vit=='large':
|
340 |
+
vision_width = 1024
|
341 |
+
visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=24,
|
342 |
+
num_heads=16, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer,
|
343 |
+
drop_path_rate=0.1 or drop_path_rate
|
344 |
+
)
|
345 |
+
return visual_encoder, vision_width
|
346 |
+
|
347 |
+
def is_url(url_or_filename):
|
348 |
+
parsed = urlparse(url_or_filename)
|
349 |
+
return parsed.scheme in ("http", "https")
|
350 |
+
|
351 |
+
def load_checkpoint(model,url_or_filename):
|
352 |
+
if is_url(url_or_filename):
|
353 |
+
cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True)
|
354 |
+
checkpoint = torch.load(cached_file, map_location='cpu')
|
355 |
+
elif os.path.isfile(url_or_filename):
|
356 |
+
checkpoint = torch.load(url_or_filename, map_location='cpu')
|
357 |
+
else:
|
358 |
+
raise RuntimeError('checkpoint url or path is invalid')
|
359 |
+
|
360 |
+
state_dict = checkpoint['model']
|
361 |
+
|
362 |
+
state_dict['visual_encoder.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'],model.visual_encoder)
|
363 |
+
if 'visual_encoder_m.pos_embed' in model.state_dict().keys():
|
364 |
+
state_dict['visual_encoder_m.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder_m.pos_embed'],
|
365 |
+
model.visual_encoder_m)
|
366 |
+
for key in model.state_dict().keys():
|
367 |
+
if key in state_dict.keys():
|
368 |
+
if state_dict[key].shape!=model.state_dict()[key].shape:
|
369 |
+
del state_dict[key]
|
370 |
+
|
371 |
+
msg = model.load_state_dict(state_dict,strict=False)
|
372 |
+
print('load checkpoint from %s'%url_or_filename)
|
373 |
+
return model,msg
|
374 |
+
|
375 |
+
|
376 |
+
def load_checkpoint_swinbase(model,url_or_filename,kwargs):
|
377 |
+
if kwargs['image_size'] == 224:
|
378 |
+
vision_config_path = 'configs/swin/config_swinB_224.json'
|
379 |
+
elif kwargs['image_size'] == 384:
|
380 |
+
vision_config_path = 'configs/swin/config_swinB_384.json'
|
381 |
+
elif kwargs['image_size'] == 480:
|
382 |
+
vision_config_path = 'configs/swin/config_swinB_480.json'
|
383 |
+
elif kwargs['image_size'] == 576:
|
384 |
+
vision_config_path = 'configs/swin/config_swinB_576.json'
|
385 |
+
elif kwargs['image_size'] == 608:
|
386 |
+
vision_config_path = 'configs/swin/config_swinB_608.json'
|
387 |
+
window_size = read_json(vision_config_path)['window_size']
|
388 |
+
print('--------------')
|
389 |
+
print(url_or_filename)
|
390 |
+
print('--------------')
|
391 |
+
if is_url(url_or_filename):
|
392 |
+
cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True)
|
393 |
+
checkpoint = torch.load(cached_file, map_location='cpu')
|
394 |
+
elif os.path.isfile(url_or_filename):
|
395 |
+
checkpoint = torch.load(url_or_filename, map_location='cpu')
|
396 |
+
else:
|
397 |
+
raise RuntimeError('checkpoint url or path is invalid')
|
398 |
+
|
399 |
+
state_dict = checkpoint['model']
|
400 |
+
|
401 |
+
for k in list(state_dict.keys()):
|
402 |
+
if 'relative_position_bias_table' in k:
|
403 |
+
dst_num_pos = (2 * window_size - 1) ** 2
|
404 |
+
state_dict[k] = interpolate_relative_pos_embed(state_dict[k], dst_num_pos, param_name=k)
|
405 |
+
elif ('relative_position_index' in k) or ('attn_mask' in k):
|
406 |
+
del state_dict[k]
|
407 |
+
|
408 |
+
msg = model.load_state_dict(state_dict,strict=False)
|
409 |
+
print('load checkpoint from %s'%url_or_filename)
|
410 |
+
return model,msg
|
411 |
+
|
412 |
+
|
413 |
+
|
414 |
+
|
415 |
+
|
models/vit.py
ADDED
@@ -0,0 +1,305 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
* Copyright (c) 2022, salesforce.com, inc.
|
3 |
+
* All rights reserved.
|
4 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
5 |
+
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
6 |
+
* By Junnan Li
|
7 |
+
* Based on timm code base
|
8 |
+
* https://github.com/rwightman/pytorch-image-models/tree/master/timm
|
9 |
+
'''
|
10 |
+
|
11 |
+
import torch
|
12 |
+
import torch.nn as nn
|
13 |
+
import torch.nn.functional as F
|
14 |
+
from functools import partial
|
15 |
+
|
16 |
+
from timm.models.vision_transformer import _cfg, PatchEmbed
|
17 |
+
from timm.models.registry import register_model
|
18 |
+
from timm.models.layers import trunc_normal_, DropPath
|
19 |
+
from timm.models.helpers import named_apply, adapt_input_conv
|
20 |
+
|
21 |
+
from fairscale.nn.checkpoint.checkpoint_activations import checkpoint_wrapper
|
22 |
+
|
23 |
+
class Mlp(nn.Module):
|
24 |
+
""" MLP as used in Vision Transformer, MLP-Mixer and related networks
|
25 |
+
"""
|
26 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
27 |
+
super().__init__()
|
28 |
+
out_features = out_features or in_features
|
29 |
+
hidden_features = hidden_features or in_features
|
30 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
31 |
+
self.act = act_layer()
|
32 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
33 |
+
self.drop = nn.Dropout(drop)
|
34 |
+
|
35 |
+
def forward(self, x):
|
36 |
+
x = self.fc1(x)
|
37 |
+
x = self.act(x)
|
38 |
+
x = self.drop(x)
|
39 |
+
x = self.fc2(x)
|
40 |
+
x = self.drop(x)
|
41 |
+
return x
|
42 |
+
|
43 |
+
|
44 |
+
class Attention(nn.Module):
|
45 |
+
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
|
46 |
+
super().__init__()
|
47 |
+
self.num_heads = num_heads
|
48 |
+
head_dim = dim // num_heads
|
49 |
+
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
|
50 |
+
self.scale = qk_scale or head_dim ** -0.5
|
51 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
52 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
53 |
+
self.proj = nn.Linear(dim, dim)
|
54 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
55 |
+
self.attn_gradients = None
|
56 |
+
self.attention_map = None
|
57 |
+
|
58 |
+
def save_attn_gradients(self, attn_gradients):
|
59 |
+
self.attn_gradients = attn_gradients
|
60 |
+
|
61 |
+
def get_attn_gradients(self):
|
62 |
+
return self.attn_gradients
|
63 |
+
|
64 |
+
def save_attention_map(self, attention_map):
|
65 |
+
self.attention_map = attention_map
|
66 |
+
|
67 |
+
def get_attention_map(self):
|
68 |
+
return self.attention_map
|
69 |
+
|
70 |
+
def forward(self, x, register_hook=False):
|
71 |
+
B, N, C = x.shape
|
72 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
73 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
74 |
+
|
75 |
+
attn = (q @ k.transpose(-2, -1)) * self.scale
|
76 |
+
attn = attn.softmax(dim=-1)
|
77 |
+
attn = self.attn_drop(attn)
|
78 |
+
|
79 |
+
if register_hook:
|
80 |
+
self.save_attention_map(attn)
|
81 |
+
attn.register_hook(self.save_attn_gradients)
|
82 |
+
|
83 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
84 |
+
x = self.proj(x)
|
85 |
+
x = self.proj_drop(x)
|
86 |
+
return x
|
87 |
+
|
88 |
+
|
89 |
+
class Block(nn.Module):
|
90 |
+
|
91 |
+
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
92 |
+
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_grad_checkpointing=False):
|
93 |
+
super().__init__()
|
94 |
+
self.norm1 = norm_layer(dim)
|
95 |
+
self.attn = Attention(
|
96 |
+
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
97 |
+
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
98 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
99 |
+
self.norm2 = norm_layer(dim)
|
100 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
101 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
102 |
+
|
103 |
+
if use_grad_checkpointing:
|
104 |
+
self.attn = checkpoint_wrapper(self.attn)
|
105 |
+
self.mlp = checkpoint_wrapper(self.mlp)
|
106 |
+
|
107 |
+
def forward(self, x, register_hook=False):
|
108 |
+
x = x + self.drop_path(self.attn(self.norm1(x), register_hook=register_hook))
|
109 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
110 |
+
return x
|
111 |
+
|
112 |
+
|
113 |
+
class VisionTransformer(nn.Module):
|
114 |
+
""" Vision Transformer
|
115 |
+
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` -
|
116 |
+
https://arxiv.org/abs/2010.11929
|
117 |
+
"""
|
118 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
|
119 |
+
num_heads=12, mlp_ratio=4., qkv_bias=True, qk_scale=None, representation_size=None,
|
120 |
+
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None,
|
121 |
+
use_grad_checkpointing=False, ckpt_layer=0):
|
122 |
+
"""
|
123 |
+
Args:
|
124 |
+
img_size (int, tuple): input image size
|
125 |
+
patch_size (int, tuple): patch size
|
126 |
+
in_chans (int): number of input channels
|
127 |
+
num_classes (int): number of classes for classification head
|
128 |
+
embed_dim (int): embedding dimension
|
129 |
+
depth (int): depth of transformer
|
130 |
+
num_heads (int): number of attention heads
|
131 |
+
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
|
132 |
+
qkv_bias (bool): enable bias for qkv if True
|
133 |
+
qk_scale (float): override default qk scale of head_dim ** -0.5 if set
|
134 |
+
representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set
|
135 |
+
drop_rate (float): dropout rate
|
136 |
+
attn_drop_rate (float): attention dropout rate
|
137 |
+
drop_path_rate (float): stochastic depth rate
|
138 |
+
norm_layer: (nn.Module): normalization layer
|
139 |
+
"""
|
140 |
+
super().__init__()
|
141 |
+
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
142 |
+
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
|
143 |
+
|
144 |
+
self.patch_embed = PatchEmbed(
|
145 |
+
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
|
146 |
+
|
147 |
+
num_patches = self.patch_embed.num_patches
|
148 |
+
|
149 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
150 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
|
151 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
152 |
+
|
153 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
154 |
+
self.blocks = nn.ModuleList([
|
155 |
+
Block(
|
156 |
+
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
157 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
|
158 |
+
use_grad_checkpointing=(use_grad_checkpointing and i>=depth-ckpt_layer)
|
159 |
+
)
|
160 |
+
for i in range(depth)])
|
161 |
+
self.norm = norm_layer(embed_dim)
|
162 |
+
|
163 |
+
trunc_normal_(self.pos_embed, std=.02)
|
164 |
+
trunc_normal_(self.cls_token, std=.02)
|
165 |
+
self.apply(self._init_weights)
|
166 |
+
|
167 |
+
def _init_weights(self, m):
|
168 |
+
if isinstance(m, nn.Linear):
|
169 |
+
trunc_normal_(m.weight, std=.02)
|
170 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
171 |
+
nn.init.constant_(m.bias, 0)
|
172 |
+
elif isinstance(m, nn.LayerNorm):
|
173 |
+
nn.init.constant_(m.bias, 0)
|
174 |
+
nn.init.constant_(m.weight, 1.0)
|
175 |
+
|
176 |
+
@torch.jit.ignore
|
177 |
+
def no_weight_decay(self):
|
178 |
+
return {'pos_embed', 'cls_token'}
|
179 |
+
|
180 |
+
def forward(self, x, register_blk=-1):
|
181 |
+
B = x.shape[0]
|
182 |
+
x = self.patch_embed(x)
|
183 |
+
|
184 |
+
cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
|
185 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
186 |
+
|
187 |
+
x = x + self.pos_embed[:,:x.size(1),:]
|
188 |
+
x = self.pos_drop(x)
|
189 |
+
|
190 |
+
for i,blk in enumerate(self.blocks):
|
191 |
+
x = blk(x, register_blk==i)
|
192 |
+
x = self.norm(x)
|
193 |
+
|
194 |
+
return x
|
195 |
+
|
196 |
+
@torch.jit.ignore()
|
197 |
+
def load_pretrained(self, checkpoint_path, prefix=''):
|
198 |
+
_load_weights(self, checkpoint_path, prefix)
|
199 |
+
|
200 |
+
|
201 |
+
@torch.no_grad()
|
202 |
+
def _load_weights(model: VisionTransformer, checkpoint_path: str, prefix: str = ''):
|
203 |
+
""" Load weights from .npz checkpoints for official Google Brain Flax implementation
|
204 |
+
"""
|
205 |
+
import numpy as np
|
206 |
+
|
207 |
+
def _n2p(w, t=True):
|
208 |
+
if w.ndim == 4 and w.shape[0] == w.shape[1] == w.shape[2] == 1:
|
209 |
+
w = w.flatten()
|
210 |
+
if t:
|
211 |
+
if w.ndim == 4:
|
212 |
+
w = w.transpose([3, 2, 0, 1])
|
213 |
+
elif w.ndim == 3:
|
214 |
+
w = w.transpose([2, 0, 1])
|
215 |
+
elif w.ndim == 2:
|
216 |
+
w = w.transpose([1, 0])
|
217 |
+
return torch.from_numpy(w)
|
218 |
+
|
219 |
+
w = np.load(checkpoint_path)
|
220 |
+
if not prefix and 'opt/target/embedding/kernel' in w:
|
221 |
+
prefix = 'opt/target/'
|
222 |
+
|
223 |
+
if hasattr(model.patch_embed, 'backbone'):
|
224 |
+
# hybrid
|
225 |
+
backbone = model.patch_embed.backbone
|
226 |
+
stem_only = not hasattr(backbone, 'stem')
|
227 |
+
stem = backbone if stem_only else backbone.stem
|
228 |
+
stem.conv.weight.copy_(adapt_input_conv(stem.conv.weight.shape[1], _n2p(w[f'{prefix}conv_root/kernel'])))
|
229 |
+
stem.norm.weight.copy_(_n2p(w[f'{prefix}gn_root/scale']))
|
230 |
+
stem.norm.bias.copy_(_n2p(w[f'{prefix}gn_root/bias']))
|
231 |
+
if not stem_only:
|
232 |
+
for i, stage in enumerate(backbone.stages):
|
233 |
+
for j, block in enumerate(stage.blocks):
|
234 |
+
bp = f'{prefix}block{i + 1}/unit{j + 1}/'
|
235 |
+
for r in range(3):
|
236 |
+
getattr(block, f'conv{r + 1}').weight.copy_(_n2p(w[f'{bp}conv{r + 1}/kernel']))
|
237 |
+
getattr(block, f'norm{r + 1}').weight.copy_(_n2p(w[f'{bp}gn{r + 1}/scale']))
|
238 |
+
getattr(block, f'norm{r + 1}').bias.copy_(_n2p(w[f'{bp}gn{r + 1}/bias']))
|
239 |
+
if block.downsample is not None:
|
240 |
+
block.downsample.conv.weight.copy_(_n2p(w[f'{bp}conv_proj/kernel']))
|
241 |
+
block.downsample.norm.weight.copy_(_n2p(w[f'{bp}gn_proj/scale']))
|
242 |
+
block.downsample.norm.bias.copy_(_n2p(w[f'{bp}gn_proj/bias']))
|
243 |
+
embed_conv_w = _n2p(w[f'{prefix}embedding/kernel'])
|
244 |
+
else:
|
245 |
+
embed_conv_w = adapt_input_conv(
|
246 |
+
model.patch_embed.proj.weight.shape[1], _n2p(w[f'{prefix}embedding/kernel']))
|
247 |
+
model.patch_embed.proj.weight.copy_(embed_conv_w)
|
248 |
+
model.patch_embed.proj.bias.copy_(_n2p(w[f'{prefix}embedding/bias']))
|
249 |
+
model.cls_token.copy_(_n2p(w[f'{prefix}cls'], t=False))
|
250 |
+
pos_embed_w = _n2p(w[f'{prefix}Transformer/posembed_input/pos_embedding'], t=False)
|
251 |
+
if pos_embed_w.shape != model.pos_embed.shape:
|
252 |
+
pos_embed_w = resize_pos_embed( # resize pos embedding when different size from pretrained weights
|
253 |
+
pos_embed_w, model.pos_embed, getattr(model, 'num_tokens', 1), model.patch_embed.grid_size)
|
254 |
+
model.pos_embed.copy_(pos_embed_w)
|
255 |
+
model.norm.weight.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/scale']))
|
256 |
+
model.norm.bias.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/bias']))
|
257 |
+
# if isinstance(model.head, nn.Linear) and model.head.bias.shape[0] == w[f'{prefix}head/bias'].shape[-1]:
|
258 |
+
# model.head.weight.copy_(_n2p(w[f'{prefix}head/kernel']))
|
259 |
+
# model.head.bias.copy_(_n2p(w[f'{prefix}head/bias']))
|
260 |
+
# if isinstance(getattr(model.pre_logits, 'fc', None), nn.Linear) and f'{prefix}pre_logits/bias' in w:
|
261 |
+
# model.pre_logits.fc.weight.copy_(_n2p(w[f'{prefix}pre_logits/kernel']))
|
262 |
+
# model.pre_logits.fc.bias.copy_(_n2p(w[f'{prefix}pre_logits/bias']))
|
263 |
+
for i, block in enumerate(model.blocks.children()):
|
264 |
+
block_prefix = f'{prefix}Transformer/encoderblock_{i}/'
|
265 |
+
mha_prefix = block_prefix + 'MultiHeadDotProductAttention_1/'
|
266 |
+
block.norm1.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/scale']))
|
267 |
+
block.norm1.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/bias']))
|
268 |
+
block.attn.qkv.weight.copy_(torch.cat([
|
269 |
+
_n2p(w[f'{mha_prefix}{n}/kernel'], t=False).flatten(1).T for n in ('query', 'key', 'value')]))
|
270 |
+
block.attn.qkv.bias.copy_(torch.cat([
|
271 |
+
_n2p(w[f'{mha_prefix}{n}/bias'], t=False).reshape(-1) for n in ('query', 'key', 'value')]))
|
272 |
+
block.attn.proj.weight.copy_(_n2p(w[f'{mha_prefix}out/kernel']).flatten(1))
|
273 |
+
block.attn.proj.bias.copy_(_n2p(w[f'{mha_prefix}out/bias']))
|
274 |
+
for r in range(2):
|
275 |
+
getattr(block.mlp, f'fc{r + 1}').weight.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/kernel']))
|
276 |
+
getattr(block.mlp, f'fc{r + 1}').bias.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/bias']))
|
277 |
+
block.norm2.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/scale']))
|
278 |
+
block.norm2.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/bias']))
|
279 |
+
|
280 |
+
|
281 |
+
def interpolate_pos_embed(pos_embed_checkpoint, visual_encoder):
|
282 |
+
# interpolate position embedding
|
283 |
+
embedding_size = pos_embed_checkpoint.shape[-1]
|
284 |
+
num_patches = visual_encoder.patch_embed.num_patches
|
285 |
+
num_extra_tokens = visual_encoder.pos_embed.shape[-2] - num_patches
|
286 |
+
# height (== width) for the checkpoint position embedding
|
287 |
+
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
|
288 |
+
# height (== width) for the new position embedding
|
289 |
+
new_size = int(num_patches ** 0.5)
|
290 |
+
|
291 |
+
if orig_size!=new_size:
|
292 |
+
# class_token and dist_token are kept unchanged
|
293 |
+
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
294 |
+
# only the position tokens are interpolated
|
295 |
+
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
296 |
+
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
|
297 |
+
pos_tokens = torch.nn.functional.interpolate(
|
298 |
+
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
|
299 |
+
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
|
300 |
+
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
301 |
+
print('reshape position embedding from %d to %d'%(orig_size ** 2,new_size ** 2))
|
302 |
+
|
303 |
+
return new_pos_embed
|
304 |
+
else:
|
305 |
+
return pos_embed_checkpoint
|
requirements.txt
CHANGED
@@ -1,7 +1,4 @@
|
|
1 |
timm==0.4.12
|
2 |
-
|
3 |
fairscale==0.4.4
|
4 |
pycocoevalcap
|
5 |
-
torch
|
6 |
-
torchvision
|
7 |
-
Pillow
|
|
|
1 |
timm==0.4.12
|
2 |
+
transformers==4.15.0
|
3 |
fairscale==0.4.4
|
4 |
pycocoevalcap
|
|
|
|
|
|
upload.ipynb
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "ecc45cb5-15a0-424b-b97d-d29a73b2e809",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stderr",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"/opt/conda/lib/python3.7/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
14 |
+
" from .autonotebook import tqdm as notebook_tqdm\n"
|
15 |
+
]
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"ename": "ImportError",
|
19 |
+
"evalue": "cannot import name 'login' from 'huggingface_hub' (/home/oppoer/.local/lib/python3.7/site-packages/huggingface_hub/__init__.py)",
|
20 |
+
"output_type": "error",
|
21 |
+
"traceback": [
|
22 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
23 |
+
"\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)",
|
24 |
+
"\u001b[0;32m/tmp/ipykernel_1707/2376108712.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mhuggingface_hub\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mlogin\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
|
25 |
+
"\u001b[0;31mImportError\u001b[0m: cannot import name 'login' from 'huggingface_hub' (/home/oppoer/.local/lib/python3.7/site-packages/huggingface_hub/__init__.py)"
|
26 |
+
]
|
27 |
+
}
|
28 |
+
],
|
29 |
+
"source": [
|
30 |
+
"from huggingface_hub import login"
|
31 |
+
]
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"cell_type": "code",
|
35 |
+
"execution_count": null,
|
36 |
+
"id": "1d5da498-403a-4d54-8fd2-981665980977",
|
37 |
+
"metadata": {},
|
38 |
+
"outputs": [],
|
39 |
+
"source": []
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"cell_type": "code",
|
43 |
+
"execution_count": null,
|
44 |
+
"id": "a2947119-5752-4d4f-99f0-e6d306bcf0ae",
|
45 |
+
"metadata": {},
|
46 |
+
"outputs": [],
|
47 |
+
"source": []
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"cell_type": "code",
|
51 |
+
"execution_count": null,
|
52 |
+
"id": "bba28b02-af45-4be3-b26e-7f456a48fe95",
|
53 |
+
"metadata": {},
|
54 |
+
"outputs": [],
|
55 |
+
"source": []
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"cell_type": "code",
|
59 |
+
"execution_count": null,
|
60 |
+
"id": "9f349128-a60e-4bb2-9a06-1628e42cb659",
|
61 |
+
"metadata": {},
|
62 |
+
"outputs": [],
|
63 |
+
"source": []
|
64 |
+
}
|
65 |
+
],
|
66 |
+
"metadata": {
|
67 |
+
"kernelspec": {
|
68 |
+
"display_name": "Python 3 (ipykernel)",
|
69 |
+
"language": "python",
|
70 |
+
"name": "python3"
|
71 |
+
},
|
72 |
+
"language_info": {
|
73 |
+
"codemirror_mode": {
|
74 |
+
"name": "ipython",
|
75 |
+
"version": 3
|
76 |
+
},
|
77 |
+
"file_extension": ".py",
|
78 |
+
"mimetype": "text/x-python",
|
79 |
+
"name": "python",
|
80 |
+
"nbconvert_exporter": "python",
|
81 |
+
"pygments_lexer": "ipython3",
|
82 |
+
"version": "3.7.12"
|
83 |
+
}
|
84 |
+
},
|
85 |
+
"nbformat": 4,
|
86 |
+
"nbformat_minor": 5
|
87 |
+
}
|