|
import pickle |
|
import os |
|
import re |
|
from g2p_en import G2p |
|
from transformers import DebertaV2Tokenizer |
|
|
|
from . import symbols |
|
|
|
current_file_path = os.path.dirname(__file__) |
|
CMU_DICT_PATH = os.path.join(current_file_path, "cmudict.rep") |
|
CACHE_PATH = os.path.join(current_file_path, "cmudict_cache.pickle") |
|
_g2p = G2p() |
|
LOCAL_PATH = "./bert/deberta-v3-large" |
|
tokenizer = DebertaV2Tokenizer.from_pretrained(LOCAL_PATH) |
|
|
|
arpa = { |
|
"AH0", |
|
"S", |
|
"AH1", |
|
"EY2", |
|
"AE2", |
|
"EH0", |
|
"OW2", |
|
"UH0", |
|
"NG", |
|
"B", |
|
"G", |
|
"AY0", |
|
"M", |
|
"AA0", |
|
"F", |
|
"AO0", |
|
"ER2", |
|
"UH1", |
|
"IY1", |
|
"AH2", |
|
"DH", |
|
"IY0", |
|
"EY1", |
|
"IH0", |
|
"K", |
|
"N", |
|
"W", |
|
"IY2", |
|
"T", |
|
"AA1", |
|
"ER1", |
|
"EH2", |
|
"OY0", |
|
"UH2", |
|
"UW1", |
|
"Z", |
|
"AW2", |
|
"AW1", |
|
"V", |
|
"UW2", |
|
"AA2", |
|
"ER", |
|
"AW0", |
|
"UW0", |
|
"R", |
|
"OW1", |
|
"EH1", |
|
"ZH", |
|
"AE0", |
|
"IH2", |
|
"IH", |
|
"Y", |
|
"JH", |
|
"P", |
|
"AY1", |
|
"EY0", |
|
"OY2", |
|
"TH", |
|
"HH", |
|
"D", |
|
"ER0", |
|
"CH", |
|
"AO1", |
|
"AE1", |
|
"AO2", |
|
"OY1", |
|
"AY2", |
|
"IH1", |
|
"OW0", |
|
"L", |
|
"SH", |
|
} |
|
|
|
|
|
def post_replace_ph(ph): |
|
rep_map = { |
|
":": ",", |
|
";": ",", |
|
",": ",", |
|
"。": ".", |
|
"!": "!", |
|
"?": "?", |
|
"\n": ".", |
|
"·": ",", |
|
"、": ",", |
|
"…": "...", |
|
"···": "...", |
|
"・・・": "...", |
|
"v": "V", |
|
} |
|
if ph in rep_map.keys(): |
|
ph = rep_map[ph] |
|
if ph in symbols: |
|
return ph |
|
if ph not in symbols: |
|
ph = "UNK" |
|
return ph |
|
|
|
|
|
rep_map = { |
|
":": ",", |
|
";": ",", |
|
",": ",", |
|
"。": ".", |
|
"!": "!", |
|
"?": "?", |
|
"\n": ".", |
|
".": ".", |
|
"…": "...", |
|
"···": "...", |
|
"・・・": "...", |
|
"·": ",", |
|
"・": ",", |
|
"、": ",", |
|
"$": ".", |
|
"“": "'", |
|
"”": "'", |
|
'"': "'", |
|
"‘": "'", |
|
"’": "'", |
|
"(": "'", |
|
")": "'", |
|
"(": "'", |
|
")": "'", |
|
"《": "'", |
|
"》": "'", |
|
"【": "'", |
|
"】": "'", |
|
"[": "'", |
|
"]": "'", |
|
"—": "-", |
|
"−": "-", |
|
"~": "-", |
|
"~": "-", |
|
"「": "'", |
|
"」": "'", |
|
} |
|
|
|
|
|
def replace_punctuation(text): |
|
pattern = re.compile("|".join(re.escape(p) for p in rep_map.keys())) |
|
|
|
replaced_text = pattern.sub(lambda x: rep_map[x.group()], text) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return replaced_text |
|
|
|
|
|
def read_dict(): |
|
g2p_dict = {} |
|
start_line = 49 |
|
with open(CMU_DICT_PATH) as f: |
|
line = f.readline() |
|
line_index = 1 |
|
while line: |
|
if line_index >= start_line: |
|
line = line.strip() |
|
word_split = line.split(" ") |
|
word = word_split[0] |
|
|
|
syllable_split = word_split[1].split(" - ") |
|
g2p_dict[word] = [] |
|
for syllable in syllable_split: |
|
phone_split = syllable.split(" ") |
|
g2p_dict[word].append(phone_split) |
|
|
|
line_index = line_index + 1 |
|
line = f.readline() |
|
|
|
return g2p_dict |
|
|
|
|
|
def cache_dict(g2p_dict, file_path): |
|
with open(file_path, "wb") as pickle_file: |
|
pickle.dump(g2p_dict, pickle_file) |
|
|
|
|
|
def get_dict(): |
|
if os.path.exists(CACHE_PATH): |
|
with open(CACHE_PATH, "rb") as pickle_file: |
|
g2p_dict = pickle.load(pickle_file) |
|
else: |
|
g2p_dict = read_dict() |
|
cache_dict(g2p_dict, CACHE_PATH) |
|
|
|
return g2p_dict |
|
|
|
|
|
eng_dict = get_dict() |
|
|
|
|
|
def refine_ph(phn): |
|
tone = 0 |
|
if re.search(r"\d$", phn): |
|
tone = int(phn[-1]) + 1 |
|
phn = phn[:-1] |
|
return phn.lower(), tone |
|
|
|
|
|
def refine_syllables(syllables): |
|
tones = [] |
|
phonemes = [] |
|
for phn_list in syllables: |
|
for i in range(len(phn_list)): |
|
phn = phn_list[i] |
|
phn, tone = refine_ph(phn) |
|
phonemes.append(phn) |
|
tones.append(tone) |
|
return phonemes, tones |
|
|
|
|
|
import re |
|
import inflect |
|
|
|
_inflect = inflect.engine() |
|
_comma_number_re = re.compile(r"([0-9][0-9\,]+[0-9])") |
|
_decimal_number_re = re.compile(r"([0-9]+\.[0-9]+)") |
|
_pounds_re = re.compile(r"£([0-9\,]*[0-9]+)") |
|
_dollars_re = re.compile(r"\$([0-9\.\,]*[0-9]+)") |
|
_ordinal_re = re.compile(r"[0-9]+(st|nd|rd|th)") |
|
_number_re = re.compile(r"[0-9]+") |
|
|
|
|
|
_abbreviations = [ |
|
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1]) |
|
for x in [ |
|
("mrs", "misess"), |
|
("mr", "mister"), |
|
("dr", "doctor"), |
|
("st", "saint"), |
|
("co", "company"), |
|
("jr", "junior"), |
|
("maj", "major"), |
|
("gen", "general"), |
|
("drs", "doctors"), |
|
("rev", "reverend"), |
|
("lt", "lieutenant"), |
|
("hon", "honorable"), |
|
("sgt", "sergeant"), |
|
("capt", "captain"), |
|
("esq", "esquire"), |
|
("ltd", "limited"), |
|
("col", "colonel"), |
|
("ft", "fort"), |
|
] |
|
] |
|
|
|
|
|
|
|
_lazy_ipa = [ |
|
(re.compile("%s" % x[0]), x[1]) |
|
for x in [ |
|
("r", "ɹ"), |
|
("æ", "e"), |
|
("ɑ", "a"), |
|
("ɔ", "o"), |
|
("ð", "z"), |
|
("θ", "s"), |
|
("ɛ", "e"), |
|
("ɪ", "i"), |
|
("ʊ", "u"), |
|
("ʒ", "ʥ"), |
|
("ʤ", "ʥ"), |
|
("ˈ", "↓"), |
|
] |
|
] |
|
|
|
|
|
_lazy_ipa2 = [ |
|
(re.compile("%s" % x[0]), x[1]) |
|
for x in [ |
|
("r", "ɹ"), |
|
("ð", "z"), |
|
("θ", "s"), |
|
("ʒ", "ʑ"), |
|
("ʤ", "dʑ"), |
|
("ˈ", "↓"), |
|
] |
|
] |
|
|
|
|
|
_ipa_to_ipa2 = [ |
|
(re.compile("%s" % x[0]), x[1]) for x in [("r", "ɹ"), ("ʤ", "dʒ"), ("ʧ", "tʃ")] |
|
] |
|
|
|
|
|
def _expand_dollars(m): |
|
match = m.group(1) |
|
parts = match.split(".") |
|
if len(parts) > 2: |
|
return match + " dollars" |
|
dollars = int(parts[0]) if parts[0] else 0 |
|
cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0 |
|
if dollars and cents: |
|
dollar_unit = "dollar" if dollars == 1 else "dollars" |
|
cent_unit = "cent" if cents == 1 else "cents" |
|
return "%s %s, %s %s" % (dollars, dollar_unit, cents, cent_unit) |
|
elif dollars: |
|
dollar_unit = "dollar" if dollars == 1 else "dollars" |
|
return "%s %s" % (dollars, dollar_unit) |
|
elif cents: |
|
cent_unit = "cent" if cents == 1 else "cents" |
|
return "%s %s" % (cents, cent_unit) |
|
else: |
|
return "zero dollars" |
|
|
|
|
|
def _remove_commas(m): |
|
return m.group(1).replace(",", "") |
|
|
|
|
|
def _expand_ordinal(m): |
|
return _inflect.number_to_words(m.group(0)) |
|
|
|
|
|
def _expand_number(m): |
|
num = int(m.group(0)) |
|
if num > 1000 and num < 3000: |
|
if num == 2000: |
|
return "two thousand" |
|
elif num > 2000 and num < 2010: |
|
return "two thousand " + _inflect.number_to_words(num % 100) |
|
elif num % 100 == 0: |
|
return _inflect.number_to_words(num // 100) + " hundred" |
|
else: |
|
return _inflect.number_to_words( |
|
num, andword="", zero="oh", group=2 |
|
).replace(", ", " ") |
|
else: |
|
return _inflect.number_to_words(num, andword="") |
|
|
|
|
|
def _expand_decimal_point(m): |
|
return m.group(1).replace(".", " point ") |
|
|
|
|
|
def normalize_numbers(text): |
|
text = re.sub(_comma_number_re, _remove_commas, text) |
|
text = re.sub(_pounds_re, r"\1 pounds", text) |
|
text = re.sub(_dollars_re, _expand_dollars, text) |
|
text = re.sub(_decimal_number_re, _expand_decimal_point, text) |
|
text = re.sub(_ordinal_re, _expand_ordinal, text) |
|
text = re.sub(_number_re, _expand_number, text) |
|
return text |
|
|
|
|
|
def text_normalize(text): |
|
text = normalize_numbers(text) |
|
text = replace_punctuation(text) |
|
text = re.sub(r"([,;.\?\!])([\w])", r"\1 \2", text) |
|
return text |
|
|
|
|
|
def distribute_phone(n_phone, n_word): |
|
phones_per_word = [0] * n_word |
|
for task in range(n_phone): |
|
min_tasks = min(phones_per_word) |
|
min_index = phones_per_word.index(min_tasks) |
|
phones_per_word[min_index] += 1 |
|
return phones_per_word |
|
|
|
|
|
def sep_text(text): |
|
words = re.split(r"([,;.\?\!\s+])", text) |
|
words = [word for word in words if word.strip() != ""] |
|
return words |
|
|
|
|
|
def g2p(text): |
|
phones = [] |
|
tones = [] |
|
|
|
words = sep_text(text) |
|
tokens = [tokenizer.tokenize(i) for i in words] |
|
for word in words: |
|
if word.upper() in eng_dict: |
|
phns, tns = refine_syllables(eng_dict[word.upper()]) |
|
phones.append([post_replace_ph(i) for i in phns]) |
|
tones.append(tns) |
|
|
|
else: |
|
phone_list = list(filter(lambda p: p != " ", _g2p(word))) |
|
phns = [] |
|
tns = [] |
|
for ph in phone_list: |
|
if ph in arpa: |
|
ph, tn = refine_ph(ph) |
|
phns.append(ph) |
|
tns.append(tn) |
|
else: |
|
phns.append(ph) |
|
tns.append(0) |
|
phones.append([post_replace_ph(i) for i in phns]) |
|
tones.append(tns) |
|
|
|
|
|
|
|
word2ph = [] |
|
for token, phoneme in zip(tokens, phones): |
|
phone_len = len(phoneme) |
|
word_len = len(token) |
|
|
|
aaa = distribute_phone(phone_len, word_len) |
|
word2ph += aaa |
|
|
|
phones = ["_"] + [j for i in phones for j in i] + ["_"] |
|
tones = [0] + [j for i in tones for j in i] + [0] |
|
word2ph = [1] + word2ph + [1] |
|
assert len(phones) == len(tones), text |
|
assert len(phones) == sum(word2ph), text |
|
|
|
return phones, tones, word2ph |
|
|
|
|
|
def get_bert_feature(text, word2ph): |
|
from text import english_bert_mock |
|
|
|
return english_bert_mock.get_bert_feature(text, word2ph) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
print(g2p("In this paper, we propose 1 DSPGAN, a GAN-based universal vocoder.")) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|