|
import os |
|
import random |
|
import torch |
|
import torch.utils.data |
|
from tqdm import tqdm |
|
import numpy as np |
|
from tools.log import logger |
|
import commons |
|
from mel_processing import spectrogram_torch, mel_spectrogram_torch |
|
from utils import load_wav_to_torch, load_filepaths_and_text |
|
from text import cleaned_text_to_sequence |
|
from config import config |
|
|
|
"""Multi speaker version""" |
|
|
|
|
|
class TextAudioSpeakerLoader(torch.utils.data.Dataset): |
|
""" |
|
1) loads audio, speaker_id, text pairs |
|
2) normalizes text and converts them to sequences of integers |
|
3) computes spectrograms from audio files. |
|
""" |
|
|
|
def __init__(self, audiopaths_sid_text, hparams): |
|
self.audiopaths_sid_text = load_filepaths_and_text(audiopaths_sid_text) |
|
self.max_wav_value = hparams.max_wav_value |
|
self.sampling_rate = hparams.sampling_rate |
|
self.filter_length = hparams.filter_length |
|
self.hop_length = hparams.hop_length |
|
self.win_length = hparams.win_length |
|
self.sampling_rate = hparams.sampling_rate |
|
self.spk_map = hparams.spk2id |
|
self.hparams = hparams |
|
|
|
self.use_mel_spec_posterior = getattr( |
|
hparams, "use_mel_posterior_encoder", False |
|
) |
|
if self.use_mel_spec_posterior: |
|
self.n_mel_channels = getattr(hparams, "n_mel_channels", 80) |
|
|
|
self.cleaned_text = getattr(hparams, "cleaned_text", False) |
|
|
|
self.add_blank = hparams.add_blank |
|
self.min_text_len = getattr(hparams, "min_text_len", 1) |
|
self.max_text_len = getattr(hparams, "max_text_len", 384) |
|
|
|
self.empty_emo = torch.squeeze( |
|
torch.load("empty_emo.npy", map_location="cpu"), dim=1 |
|
) |
|
|
|
random.seed(1234) |
|
random.shuffle(self.audiopaths_sid_text) |
|
self._filter() |
|
|
|
def _filter(self): |
|
""" |
|
Filter text & store spec lengths |
|
""" |
|
|
|
|
|
|
|
|
|
audiopaths_sid_text_new = [] |
|
lengths = [] |
|
skipped = 0 |
|
logger.info("Init dataset...") |
|
for _id, spk, language, text, phones, tone, word2ph in tqdm( |
|
self.audiopaths_sid_text |
|
): |
|
audiopath = f"{_id}" |
|
if self.min_text_len <= len(phones) and len(phones) <= self.max_text_len: |
|
phones = phones.split(" ") |
|
tone = [int(i) for i in tone.split(" ")] |
|
word2ph = [int(i) for i in word2ph.split(" ")] |
|
audiopaths_sid_text_new.append( |
|
[audiopath, spk, language, text, phones, tone, word2ph] |
|
) |
|
lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length)) |
|
else: |
|
skipped += 1 |
|
logger.info( |
|
"skipped: " |
|
+ str(skipped) |
|
+ ", total: " |
|
+ str(len(self.audiopaths_sid_text)) |
|
) |
|
self.audiopaths_sid_text = audiopaths_sid_text_new |
|
self.lengths = lengths |
|
|
|
def get_audio_text_speaker_pair(self, audiopath_sid_text): |
|
|
|
audiopath, sid, language, text, phones, tone, word2ph = audiopath_sid_text |
|
|
|
bert, ja_bert, en_bert, phones, tone, language = self.get_text( |
|
text, word2ph, phones, tone, language, audiopath |
|
) |
|
|
|
spec, wav = self.get_audio(audiopath) |
|
sid = torch.LongTensor([int(self.spk_map[sid])]) |
|
|
|
if np.random.rand() > 0.1: |
|
emo = torch.squeeze( |
|
torch.load(audiopath.replace(".wav", ".emo.npy"), map_location="cpu"), |
|
dim=1, |
|
) |
|
else: |
|
emo = self.empty_emo |
|
return (phones, spec, wav, sid, tone, language, bert, ja_bert, en_bert, emo) |
|
|
|
def get_audio(self, filename): |
|
audio, sampling_rate = load_wav_to_torch(filename) |
|
if sampling_rate != self.sampling_rate: |
|
raise ValueError( |
|
"{} {} SR doesn't match target {} SR".format( |
|
filename, sampling_rate, self.sampling_rate |
|
) |
|
) |
|
audio_norm = audio / self.max_wav_value |
|
audio_norm = audio_norm.unsqueeze(0) |
|
spec_filename = filename.replace(".wav", ".spec.pt") |
|
if self.use_mel_spec_posterior: |
|
spec_filename = spec_filename.replace(".spec.pt", ".mel.pt") |
|
try: |
|
spec = torch.load(spec_filename) |
|
except: |
|
if self.use_mel_spec_posterior: |
|
spec = mel_spectrogram_torch( |
|
audio_norm, |
|
self.filter_length, |
|
self.n_mel_channels, |
|
self.sampling_rate, |
|
self.hop_length, |
|
self.win_length, |
|
self.hparams.mel_fmin, |
|
self.hparams.mel_fmax, |
|
center=False, |
|
) |
|
else: |
|
spec = spectrogram_torch( |
|
audio_norm, |
|
self.filter_length, |
|
self.sampling_rate, |
|
self.hop_length, |
|
self.win_length, |
|
center=False, |
|
) |
|
spec = torch.squeeze(spec, 0) |
|
if config.train_ms_config.spec_cache: |
|
torch.save(spec, spec_filename) |
|
return spec, audio_norm |
|
|
|
def get_text(self, text, word2ph, phone, tone, language_str, wav_path): |
|
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) |
|
if self.add_blank: |
|
phone = commons.intersperse(phone, 0) |
|
tone = commons.intersperse(tone, 0) |
|
language = commons.intersperse(language, 0) |
|
for i in range(len(word2ph)): |
|
word2ph[i] = word2ph[i] * 2 |
|
word2ph[0] += 1 |
|
bert_path = wav_path.replace(".wav", ".bert.pt") |
|
try: |
|
bert_ori = torch.load(bert_path) |
|
assert bert_ori.shape[-1] == len(phone) |
|
except Exception as e: |
|
logger.warning("Bert load Failed") |
|
logger.warning(e) |
|
|
|
if language_str == "ZH": |
|
bert = bert_ori |
|
ja_bert = torch.rand(1024, len(phone)) |
|
en_bert = torch.rand(1024, len(phone)) |
|
elif language_str == "JP": |
|
bert = torch.rand(1024, len(phone)) |
|
ja_bert = bert_ori |
|
en_bert = torch.rand(1024, len(phone)) |
|
elif language_str == "EN": |
|
bert = torch.rand(1024, len(phone)) |
|
ja_bert = torch.rand(1024, len(phone)) |
|
en_bert = bert_ori |
|
phone = torch.LongTensor(phone) |
|
tone = torch.LongTensor(tone) |
|
language = torch.LongTensor(language) |
|
return bert, ja_bert, en_bert, phone, tone, language |
|
|
|
def get_sid(self, sid): |
|
sid = torch.LongTensor([int(sid)]) |
|
return sid |
|
|
|
def __getitem__(self, index): |
|
return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index]) |
|
|
|
def __len__(self): |
|
return len(self.audiopaths_sid_text) |
|
|
|
|
|
class TextAudioSpeakerCollate: |
|
"""Zero-pads model inputs and targets""" |
|
|
|
def __init__(self, return_ids=False): |
|
self.return_ids = return_ids |
|
|
|
def __call__(self, batch): |
|
"""Collate's training batch from normalized text, audio and speaker identities |
|
PARAMS |
|
------ |
|
batch: [text_normalized, spec_normalized, wav_normalized, sid] |
|
""" |
|
|
|
_, ids_sorted_decreasing = torch.sort( |
|
torch.LongTensor([x[1].size(1) for x in batch]), dim=0, descending=True |
|
) |
|
|
|
max_text_len = max([len(x[0]) for x in batch]) |
|
max_spec_len = max([x[1].size(1) for x in batch]) |
|
max_wav_len = max([x[2].size(1) for x in batch]) |
|
|
|
text_lengths = torch.LongTensor(len(batch)) |
|
spec_lengths = torch.LongTensor(len(batch)) |
|
wav_lengths = torch.LongTensor(len(batch)) |
|
sid = torch.LongTensor(len(batch)) |
|
|
|
text_padded = torch.LongTensor(len(batch), max_text_len) |
|
tone_padded = torch.LongTensor(len(batch), max_text_len) |
|
language_padded = torch.LongTensor(len(batch), max_text_len) |
|
bert_padded = torch.FloatTensor(len(batch), 1024, max_text_len) |
|
ja_bert_padded = torch.FloatTensor(len(batch), 1024, max_text_len) |
|
en_bert_padded = torch.FloatTensor(len(batch), 1024, max_text_len) |
|
emo = torch.FloatTensor(len(batch), 512) |
|
|
|
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len) |
|
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len) |
|
text_padded.zero_() |
|
tone_padded.zero_() |
|
language_padded.zero_() |
|
spec_padded.zero_() |
|
wav_padded.zero_() |
|
bert_padded.zero_() |
|
ja_bert_padded.zero_() |
|
en_bert_padded.zero_() |
|
emo.zero_() |
|
|
|
for i in range(len(ids_sorted_decreasing)): |
|
row = batch[ids_sorted_decreasing[i]] |
|
|
|
text = row[0] |
|
text_padded[i, : text.size(0)] = text |
|
text_lengths[i] = text.size(0) |
|
|
|
spec = row[1] |
|
spec_padded[i, :, : spec.size(1)] = spec |
|
spec_lengths[i] = spec.size(1) |
|
|
|
wav = row[2] |
|
wav_padded[i, :, : wav.size(1)] = wav |
|
wav_lengths[i] = wav.size(1) |
|
|
|
sid[i] = row[3] |
|
|
|
tone = row[4] |
|
tone_padded[i, : tone.size(0)] = tone |
|
|
|
language = row[5] |
|
language_padded[i, : language.size(0)] = language |
|
|
|
bert = row[6] |
|
bert_padded[i, :, : bert.size(1)] = bert |
|
|
|
ja_bert = row[7] |
|
ja_bert_padded[i, :, : ja_bert.size(1)] = ja_bert |
|
|
|
en_bert = row[8] |
|
en_bert_padded[i, :, : en_bert.size(1)] = en_bert |
|
|
|
emo[i, :] = row[9] |
|
|
|
return ( |
|
text_padded, |
|
text_lengths, |
|
spec_padded, |
|
spec_lengths, |
|
wav_padded, |
|
wav_lengths, |
|
sid, |
|
tone_padded, |
|
language_padded, |
|
bert_padded, |
|
ja_bert_padded, |
|
en_bert_padded, |
|
emo, |
|
) |
|
|
|
|
|
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler): |
|
""" |
|
Maintain similar input lengths in a batch. |
|
Length groups are specified by boundaries. |
|
Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}. |
|
|
|
It removes samples which are not included in the boundaries. |
|
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dataset, |
|
batch_size, |
|
boundaries, |
|
num_replicas=None, |
|
rank=None, |
|
shuffle=True, |
|
): |
|
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle) |
|
self.lengths = dataset.lengths |
|
self.batch_size = batch_size |
|
self.boundaries = boundaries |
|
|
|
self.buckets, self.num_samples_per_bucket = self._create_buckets() |
|
self.total_size = sum(self.num_samples_per_bucket) |
|
self.num_samples = self.total_size // self.num_replicas |
|
|
|
def _create_buckets(self): |
|
buckets = [[] for _ in range(len(self.boundaries) - 1)] |
|
for i in range(len(self.lengths)): |
|
length = self.lengths[i] |
|
idx_bucket = self._bisect(length) |
|
if idx_bucket != -1: |
|
buckets[idx_bucket].append(i) |
|
|
|
try: |
|
for i in range(len(buckets) - 1, 0, -1): |
|
if len(buckets[i]) == 0: |
|
buckets.pop(i) |
|
self.boundaries.pop(i + 1) |
|
assert all(len(bucket) > 0 for bucket in buckets) |
|
|
|
except Exception as e: |
|
print("Bucket warning ", e) |
|
for i in range(len(buckets) - 1, -1, -1): |
|
if len(buckets[i]) == 0: |
|
buckets.pop(i) |
|
self.boundaries.pop(i + 1) |
|
|
|
num_samples_per_bucket = [] |
|
for i in range(len(buckets)): |
|
len_bucket = len(buckets[i]) |
|
total_batch_size = self.num_replicas * self.batch_size |
|
rem = ( |
|
total_batch_size - (len_bucket % total_batch_size) |
|
) % total_batch_size |
|
num_samples_per_bucket.append(len_bucket + rem) |
|
return buckets, num_samples_per_bucket |
|
|
|
def __iter__(self): |
|
|
|
g = torch.Generator() |
|
g.manual_seed(self.epoch) |
|
|
|
indices = [] |
|
if self.shuffle: |
|
for bucket in self.buckets: |
|
indices.append(torch.randperm(len(bucket), generator=g).tolist()) |
|
else: |
|
for bucket in self.buckets: |
|
indices.append(list(range(len(bucket)))) |
|
|
|
batches = [] |
|
for i in range(len(self.buckets)): |
|
bucket = self.buckets[i] |
|
len_bucket = len(bucket) |
|
if len_bucket == 0: |
|
continue |
|
ids_bucket = indices[i] |
|
num_samples_bucket = self.num_samples_per_bucket[i] |
|
|
|
|
|
rem = num_samples_bucket - len_bucket |
|
ids_bucket = ( |
|
ids_bucket |
|
+ ids_bucket * (rem // len_bucket) |
|
+ ids_bucket[: (rem % len_bucket)] |
|
) |
|
|
|
|
|
ids_bucket = ids_bucket[self.rank :: self.num_replicas] |
|
|
|
|
|
for j in range(len(ids_bucket) // self.batch_size): |
|
batch = [ |
|
bucket[idx] |
|
for idx in ids_bucket[ |
|
j * self.batch_size : (j + 1) * self.batch_size |
|
] |
|
] |
|
batches.append(batch) |
|
|
|
if self.shuffle: |
|
batch_ids = torch.randperm(len(batches), generator=g).tolist() |
|
batches = [batches[i] for i in batch_ids] |
|
self.batches = batches |
|
|
|
assert len(self.batches) * self.batch_size == self.num_samples |
|
return iter(self.batches) |
|
|
|
def _bisect(self, x, lo=0, hi=None): |
|
if hi is None: |
|
hi = len(self.boundaries) - 1 |
|
|
|
if hi > lo: |
|
mid = (hi + lo) // 2 |
|
if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]: |
|
return mid |
|
elif x <= self.boundaries[mid]: |
|
return self._bisect(x, lo, mid) |
|
else: |
|
return self._bisect(x, mid + 1, hi) |
|
else: |
|
return -1 |
|
|
|
def __len__(self): |
|
return self.num_samples // self.batch_size |
|
|