LAGENT / lagent /examples /model_cli_demo.py
xiaoxishui
Initial commit with LAGENT code
d8c7e7a
from argparse import ArgumentParser
from lagent.llms import HFTransformer
from lagent.llms.meta_template import INTERNLM2_META as META
def parse_args():
parser = ArgumentParser(description='chatbot')
parser.add_argument(
'--path',
type=str,
default='internlm/internlm2-chat-20b',
help='The path to the model')
parser.add_argument(
'--mode',
type=str,
default='chat',
help='Completion through chat or generate')
args = parser.parse_args()
return args
def main():
args = parse_args()
# Initialize the HFTransformer-based Language Model (llm)
model = HFTransformer(
path=args.path,
meta_template=META,
max_new_tokens=1024,
top_p=0.8,
top_k=None,
temperature=0.1,
repetition_penalty=1.0,
stop_words=['<|im_end|>'])
def input_prompt():
print('\ndouble enter to end input >>> ', end='', flush=True)
sentinel = '' # ends when this string is seen
return '\n'.join(iter(input, sentinel))
history = []
while True:
try:
prompt = input_prompt()
except UnicodeDecodeError:
print('UnicodeDecodeError')
continue
if prompt == 'exit':
exit(0)
history.append(dict(role='user', content=prompt))
if args.mode == 'generate':
history = [dict(role='user', content=prompt)]
print('\nInternLm2:', end='')
current_length = 0
for status, response, _ in model.stream_chat(history):
print(response[current_length:], end='', flush=True)
current_length = len(response)
history.append(dict(role='assistant', content=response))
print('')
if __name__ == '__main__':
main()