File size: 21,764 Bytes
1f81beb
 
 
a57b3d3
 
 
f20b5b5
 
 
 
 
 
 
a57b3d3
f20b5b5
 
1f81beb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6db30c
1f81beb
 
f6db30c
1f81beb
 
f6db30c
1f81beb
 
f6db30c
1f81beb
 
f6db30c
 
 
 
 
 
 
1f81beb
 
 
 
 
 
 
 
 
6118d5d
 
1f81beb
 
 
 
 
 
 
 
f6db30c
 
 
 
 
 
 
1f81beb
 
6c1172f
1f81beb
6c1172f
 
 
1f81beb
 
6c1172f
1f81beb
6c1172f
 
1f81beb
6c1172f
 
1f81beb
 
6118d5d
6c1172f
6118d5d
 
 
 
 
6c1172f
 
 
 
 
1f81beb
 
 
 
 
 
 
6118d5d
 
 
1f81beb
 
6118d5d
 
 
 
 
 
1f81beb
6c1172f
1f81beb
 
6c1172f
6118d5d
6c40bac
6118d5d
 
 
 
 
 
 
 
6c40bac
6118d5d
 
 
 
 
6c1172f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f81beb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6118d5d
1f81beb
 
 
 
 
 
9c5987b
1f81beb
 
 
 
 
6c1172f
1f81beb
 
f09a364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f81beb
 
6118d5d
1f81beb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f20b5b5
1f81beb
 
 
a57b3d3
1f81beb
 
 
 
f6db30c
 
 
 
 
 
6c1172f
f6db30c
 
 
 
 
6118d5d
 
 
f6db30c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f09a364
f6db30c
9c5987b
f6db30c
 
 
 
9c5987b
 
 
 
 
 
 
 
 
f6db30c
 
 
6c1172f
 
 
 
 
 
 
f20b5b5
6c1172f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f81beb
9f0d23e
6118d5d
1f81beb
6c1172f
 
 
 
 
 
 
 
 
 
f09a364
6c1172f
 
 
6118d5d
f09a364
9c5987b
f09a364
9c5987b
 
f09a364
9c5987b
f09a364
6c1172f
6118d5d
f09a364
f20b5b5
f09a364
f20b5b5
f09a364
 
 
 
6c1172f
 
 
1f81beb
f09a364
 
1f81beb
f09a364
1f81beb
 
6118d5d
f09a364
 
6c40bac
6118d5d
f09a364
1f81beb
6c1172f
6118d5d
f09a364
1f81beb
f09a364
6c1172f
 
f09a364
1f81beb
f09a364
1f81beb
 
6c1172f
1f81beb
 
 
3522965
 
 
 
 
 
 
 
 
 
1f81beb
6c1172f
1f81beb
 
 
 
 
 
 
 
6c1172f
 
 
f09a364
 
 
 
 
 
 
 
 
 
 
6c1172f
1f81beb
6c1172f
f09a364
6c1172f
f09a364
6118d5d
6c1172f
 
 
f6db30c
f09a364
f6db30c
1f81beb
ae2976d
 
 
 
 
f6db30c
 
ae2976d
f6db30c
6c1172f
f6db30c
 
 
9c5987b
f09a364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c5987b
1f81beb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
import gradio as gr
import pandas as pd
from plotly import graph_objects as go
import plotly.io as pio
import plotly.express as px

# @TODO: Add a custom template to the plotly figure
"""
pio.templates["custom"] = go.layout.Template()
pio.templates["custom"].layout = dict(
    plot_bgcolor="#bde5ec", paper_bgcolor="#bbd5da"
)

# Set the default theme to "plotly_dark"
pio.templates.default = "custom"
"""


def process_dataset():
    """
    Process the dataset and perform the following operations:
    1. Read the file_counts_and_sizes, repo_by_size_df, unique_files_df, and file_extensions data from parquet files.
    2. Convert the total size to petabytes and format it to two decimal places.
    3. Capitalize the 'type' column in the file_counts_and_sizes dataframe.
    4. Rename the columns in the file_counts_and_sizes dataframe.
    5. Sort the file_counts_and_sizes dataframe by total size in descending order.
    6. Drop rows with missing values in the 'extension' column of the file_extensions dataframe.
    7. Return the repo_by_size_df, unique_files_df, file_counts_and_sizes, and file_extensions dataframes.
    """

    file_counts_and_sizes = pd.read_parquet(
        "hf://datasets/xet-team/lfs-analysis-data/transformed/file_counts_and_sizes.parquet"
    )
    repo_by_size_df = pd.read_parquet(
        "hf://datasets/xet-team/lfs-analysis-data/transformed/repo_by_size.parquet"
    )
    unique_files_df = pd.read_parquet(
        "hf://datasets/xet-team/lfs-analysis-data/transformed/repo_by_size_file_dedupe.parquet"
    )
    file_extensions = pd.read_parquet(
        "hf://datasets/xet-team/lfs-analysis-data/transformed/file_extensions.parquet"
    )

    # read the file_extensions_by_month.parquet file
    file_extensions_by_month = pd.read_parquet(
        "hf://datasets/xet-team/lfs-analysis-data/transformed/file_extensions_by_month.parquet"
    )
    # drop any nas
    file_extensions_by_month = file_extensions_by_month.dropna()

    file_counts_and_sizes["type"] = file_counts_and_sizes["type"].str.capitalize()
    # update the column name to 'total size (PB)'
    file_counts_and_sizes = file_counts_and_sizes.rename(
        columns={
            "type": "Repository Type",
            "num_files": "Number of Files",
            "total_size": "Total Size (PBs)",
        }
    )
    file_counts_and_sizes = file_counts_and_sizes.drop(columns=["Number of Files"])

    # sort the dataframe by total size in descending order
    file_counts_and_sizes = file_counts_and_sizes.sort_values(
        by="Total Size (PBs)", ascending=False
    )

    # drop nas from the extension column
    file_extensions = file_extensions.dropna(subset=["extension"])

    return (
        repo_by_size_df,
        unique_files_df,
        file_counts_and_sizes,
        file_extensions,
        file_extensions_by_month,
    )


def cumulative_growth_df(_df):
    # Sort by date to ensure correct cumulative sum
    _df = _df.sort_values(by="date")
    # Pivot the dataframe to get the totalsize
    pivot_df = _df.pivot_table(
        index="date", columns="type", values="totalsize", aggfunc="sum"
    ).fillna(0)
    # Calculate cumulative sum
    cumulative_df = pivot_df.cumsum()
    return cumulative_df


def compare_last_10_months(_cumulative_df, _cumulative_df_compressed):
    last_10_months = _cumulative_df.tail(10).copy()
    last_10_months["total"] = last_10_months.sum(axis=1)
    last_10_months["total_change"] = last_10_months["total"].diff()
    last_10_months["compressed_change"] = (
        _cumulative_df_compressed.tail(10).sum(axis=1).diff()
    )
    last_10_months["savings"] = (
        last_10_months["total_change"] - last_10_months["compressed_change"]
    )

    last_10_months = format_dataframe_size_column(
        last_10_months, ["total_change", "compressed_change", "savings"]
    )

    last_10_months["date"] = _cumulative_df.tail(10).index
    # drop the dataset, model, and space
    last_10_months = last_10_months.drop(columns=["model", "space", "dataset"])
    # pretiffy the date column to not have 00:00:00
    last_10_months["date"] = last_10_months["date"].dt.strftime("%Y-%m")
    # drop the first row
    last_10_months = last_10_months.drop(last_10_months.index[0])
    # order the columns date, total, total_change
    last_10_months = last_10_months[
        ["date", "total_change", "compressed_change", "savings"]
    ]
    # rename the columns
    last_10_months = last_10_months.rename(
        columns={
            "date": "Date",
            "total_change": "Month-to-Month Growth (PBs)",
            "compressed_change": "Growth with File-Level Deduplication (PBs)",
            "savings": "Dedupe Savings (PBs)",
        }
    )
    return last_10_months


def tabular_analysis(repo_sizes, cumulative_df, cumulative_df_compressed):
    # create a new column in the repository sizes dataframe for "compressed size" and set it to empty atif rist
    repo_sizes["Deduped Size (PBs)"] = ""
    repo_sizes["Dedupe Savings (PBs)"] = ""

    for column in cumulative_df.columns:
        cum_repo_size = cumulative_df[column].iloc[-1]
        comp_repo_size = cumulative_df_compressed[column].iloc[-1]
        repo_size_diff = cum_repo_size - comp_repo_size
        repo_sizes.loc[
            repo_sizes["Repository Type"] == column.capitalize(),
            "Deduped Size (PBs)",
        ] = comp_repo_size
        repo_sizes.loc[
            repo_sizes["Repository Type"] == column.capitalize(), "Dedupe Savings (PBs)"
        ] = repo_size_diff

    # add a row that sums the total size and compressed size
    repo_sizes.loc["Total"] = repo_sizes.sum()
    repo_sizes.loc["Total", "Repository Type"] = "Total"
    return repo_sizes


def cumulative_growth_plot_analysis(cumulative_df, cumulative_df_compressed):
    """
    Calculates the cumulative growth of models, spaces, and datasets over time and generates a plot and dataframe from the analysis.

    Args:
        df (DataFrame): The input dataframe containing the data.
        df_compressed (DataFrame): The input dataframe containing the compressed data.

    Returns:
        tuple: A tuple containing two elements:
            - fig (Figure): The Plotly figure showing the cumulative growth of models, spaces, and datasets over time.
            - last_10_months (DataFrame): The last 10 months of data showing the month-to-month growth in petabytes.

    Raises:
        None
    """

    # Create a Plotly figure
    fig = go.Figure()

    # Define a color map for each type
    color_map = {
        "model": px.colors.qualitative.Alphabet[3],
        "space": px.colors.qualitative.Alphabet[2],
        "dataset": px.colors.qualitative.Alphabet[9],
    }

    # Add a scatter trace for each type
    for column in cumulative_df.columns:
        fig.add_trace(
            go.Scatter(
                x=cumulative_df.index,
                y=cumulative_df[column] / 1e15,  # Convert to petabytes
                mode="lines",
                name=column.capitalize(),
                line=dict(color=color_map.get(column, "black")),  # Use color map
            )
        )

    # Add a scatter trace for each type
    for column in cumulative_df_compressed.columns:
        fig.add_trace(
            go.Scatter(
                x=cumulative_df_compressed.index,
                y=cumulative_df_compressed[column] / 1e15,  # Convert to petabytes
                mode="lines",
                name=column.capitalize() + " (File-Level Deduplication)",
                line=dict(color=color_map.get(column, "black"), dash="dash"),
            )
        )

    # Update layout
    fig.update_layout(
        title="Cumulative Growth of Models, Spaces, and Datasets Over Time<br><sup>Dotted lines represent growth with file-level deduplication</sup>",
        xaxis_title="Date",
        yaxis_title="Cumulative Size (PBs)",
        legend_title="Type",
        yaxis=dict(tickformat=".2f"),  # Format y-axis labels to 2 decimal places
    )
    return fig


def cumulative_growth_single(_df):
    """
    Calculates the cumulative growth of models, spaces, and datasets over time and generates a plot and dataframe from the analysis.

    Args:
        df (DataFrame): The input dataframe containing the data.

    Returns:
         - fig (Figure): The Plotly figure showing the cumulative growth of models, spaces, and datasets over time.

    Raises:
        None
    """

    # Create a Plotly figure
    fig = go.Figure()

    # Define a color map for each type
    color_map = {
        "model": px.colors.qualitative.Alphabet[3],
        "space": px.colors.qualitative.Alphabet[2],
        "dataset": px.colors.qualitative.Alphabet[9],
    }

    # Add a scatter trace for each type
    for column in _df.columns:
        fig.add_trace(
            go.Scatter(
                x=_df.index,
                y=_df[column] / 1e15,  # Convert to petabytes
                mode="lines",
                name=column.capitalize(),
                line=dict(color=color_map.get(column, "black")),  # Use color map
            )
        )

    # Update layout
    fig.update_layout(
        title="Cumulative Growth of Models, Spaces, and Datasets",
        xaxis_title="Date",
        yaxis_title="Size (PBs)",
        legend_title="Type",
        yaxis=dict(tickformat=".2f"),  # Format y-axis labels to 2 decimal places
    )
    return fig


def plot_total_sum(by_type_arr):
    # Sort the array by size in decreasing order
    by_type_arr = sorted(by_type_arr, key=lambda x: x[1])

    # Create a Plotly figure
    fig = go.Figure()

    # Add a bar trace for each type
    for type, size in by_type_arr:
        fig.add_trace(
            go.Bar(
                x=[type],
                y=[size / 1e15],  # Convert to petabytes
                name=type.capitalize(),
            )
        )

    # Update layout
    fig.update_layout(
        title="Top 20 File Extensions by Total Size (in PBs)",
        xaxis_title="File Extension",
        yaxis_title="Total Size (PBs)",
        yaxis=dict(tickformat=".2f"),  # Format y-axis labels to 2 decimal places
        colorway=px.colors.qualitative.Alphabet,  # Use Plotly color palette
    )
    return fig


def filter_by_extension_month(_df, _extension):
    """
    Filters the given DataFrame (_df) by the specified extension and creates a line plot using Plotly.

    Parameters:
    _df (DataFrame): The input DataFrame containing the data.
    extension (str): The extension to filter the DataFrame by. If None, no filtering is applied.

    Returns:
    fig (Figure): The Plotly figure object representing the line plot.
    """
    # Filter the DataFrame by the specified extension or extensions
    if _extension is None:
        pass
    elif len(_extension) == 0:
        pass
    else:
        _df = _df[_df["extension"].isin(_extension)].copy()

    # Convert year and month into a datetime column and sort by date
    _df["date"] = pd.to_datetime(_df[["year", "month"]].assign(day=1))
    _df = _df.sort_values(by="date")

    # Pivot the DataFrame to get the total size for each extension and make this plotable as a time series
    pivot_df = _df.pivot_table(
        index="date", columns="extension", values="total_size"
    ).fillna(0)

    # Plot!!
    fig = go.Figure()
    for i, column in enumerate(pivot_df.columns):
        if column != "":
            fig.add_trace(
                go.Scatter(
                    x=pivot_df.index,
                    y=pivot_df[column] * 1e3,
                    mode="lines",
                    name=column,
                    line=dict(color=px.colors.qualitative.Alphabet[i]),
                )
            )

    # Update layout
    fig.update_layout(
        title="Monthly Additions of LFS Files by Extension (in TBs)",
        xaxis_title="Date",
        yaxis_title="Size (TBs)",
        legend_title="Type",
        yaxis=dict(tickformat=".2f"),  # Format y-axis labels to 2 decimal places
    )

    return fig


def area_plot_by_extension_month(_df):
    _df["total_size"] = _df["total_size"] / 1e15
    _df["date"] = pd.to_datetime(_df[["year", "month"]].assign(day=1))
    # make a plotly area chart with data and extension
    fig = px.area(_df, x="date", y="total_size", color="extension")
    # Update layout
    fig.update_layout(
        title="File Extension Monthly Additions (in PBs) Over Time",
        xaxis_title="Date",
        yaxis_title="Size (PBs)",
        legend_title="Type",
        # format y-axis to be PBs (currently bytes) with two decimal places
        yaxis=dict(tickformat=".2f"),
    )

    return fig


## Utility functions
def div_px(height):
    """
    Returns a string representing a div element with the specified height in pixels.
    """
    return f"<div style='height: {height}px;'></div>"


def format_dataframe_size_column(_df, column_names):
    """
    Format the size to petabytes and return the formatted size.
    """
    for column_name in column_names:
        _df[column_name] = _df[column_name] / 1e15
        _df[column_name] = _df[column_name].map("{:.2f}".format)
    return _df


def month_year_to_date(_df):
    """
    Converts the 'year' and 'month' columns in the given DataFrame to a single 'date' column.
    """
    _df["date"] = pd.to_datetime(_df[["year", "month"]].assign(day=1))
    return _df


# Create a gradio blocks interface and launch a demo
with gr.Blocks(theme="citrus") as demo:
    df, file_df, by_repo_type, by_extension, by_extension_month = process_dataset()

    # Convert year and month into a datetime column
    df = month_year_to_date(df)
    df_compressed = month_year_to_date(file_df)

    # Calculate the cumulative growth of models, spaces, and datasets over time
    cumulative_df = cumulative_growth_df(df)
    cumulative_df_compressed = cumulative_growth_df(df_compressed)

    last_10_months = compare_last_10_months(cumulative_df, cumulative_df_compressed)

    by_repo_type_analysis = tabular_analysis(
        by_repo_type, cumulative_df, cumulative_df_compressed
    )

    # Add top level heading and introduction text
    gr.Markdown("# Git LFS Usage across the Hub")
    gr.Markdown(
        "Ever wonder what the Hugging Face Hub holds? This is the space for you!"
    )
    gr.Markdown(
        "The Hub stores all files using a combination of [Gitaly](https://gitlab.com/gitlab-org/gitaly) (small files) on EBS and [Git LFS](https://git-lfs.com/) (large files > 10MB) on S3. As part of the [Xet team](https://huggingface.co/xet-team), one of our goals is to improve Hub storage and transfer efficiency, and understanding how and what things are currently stored helps us establish a baseline. This analysis uses a snapshot of the Hub's Git LFS usage from March 2022 - September 2024, and we plan to update it regularly to track trends. We're starting with metrics around raw storage by repository type and size/count by file extension - if you're interested in other metrics, drop your suggestions in our [discussions](https://huggingface.co/spaces/xet-team/lfs-analysis/discussions)!"
    )

    gr.HTML(div_px(25))
    # Cumulative growth analysis
    gr.Markdown("## Storage by Repository Type")
    gr.Markdown(
        "The chart below shows the growth of Git LFS storage usage by repository type since March 2022."
    )

    # get the figure for the cumulative growth plot without dedupe analysis
    cumulative_fig = cumulative_growth_single(cumulative_df)
    gr.Plot(cumulative_fig)

    gr.HTML(div_px(5))
    # @TODO Talk to Allison about variant="panel"
    with gr.Row():
        with gr.Column(scale=2):
            gr.Markdown("### Current Storage Usage")
            gr.Markdown(
                "As of September 20, 2024, total files stored in Git LFS summed to almost 29 PB. To put this into perspective, the last [Common Crawl](https://commoncrawl.org/) download was [451 TBs](https://github.com/commoncrawl/cc-crawl-statistics/blob/master/stats/crawler/CC-MAIN-2024-38.json#L31) - the Hub stores the equivalent of more than **64 Common Crawls** 🤯."
            )
        with gr.Column(scale=3):
            # Convert the total size to petabytes and format to two decimal places
            current_storage = format_dataframe_size_column(
                by_repo_type_analysis,
                ["Total Size (PBs)", "Deduped Size (PBs)", "Dedupe Savings (PBs)"],
            )
            gr.Dataframe(current_storage[["Repository Type", "Total Size (PBs)"]])

    gr.HTML(div_px(25))
    # File Extension analysis
    gr.Markdown("## Large Files Stored by File Extension")
    gr.Markdown(
        "What types of files are stored on the Hub? The Xet team's backend architecture allows for storage optimizations by file type, so seeing the breakdown of the most popular stored file types helps to prioritize our roadmap. The following sections filter the analysis to the top 20 file extensions stored (by bytes) using Git LFS. Taken together, these 20 file extensions account for 82% of the total bytes stored in LFS."
    )
    gr.Markdown(
        "[Safetensors](https://huggingface.co/docs/safetensors/en/index) is quickly becoming the defacto standard on the Hub for storing tensor files, accounting for over 7PBs (25%) of LFS storage. [GGUF (GPT-Generated Unified Format)](https://huggingface.co/docs/hub/gguf), a format for storing tensor files with a different set of optimizations, is also on the rise, accounting for 3.2 PBs (11%) of LFS storage."
    )
    # Get the top 10 file extensions by size
    by_extension_size = by_extension.sort_values(by="size", ascending=False).head(22)

    # make a bar chart of the by_extension_size dataframe
    gr.Plot(plot_total_sum(by_extension_size[["extension", "size"]].values))
    # drop the unnamed: 0 column
    by_extension_size = by_extension_size.drop(columns=["Unnamed: 0"])
    # average size
    by_extension_size["Average File Size (MBs)"] = (
        by_extension_size["size"].astype(float) / by_extension_size["count"]
    )
    by_extension_size["Average File Size (MBs)"] = (
        by_extension_size["Average File Size (MBs)"] / 1e6
    )
    by_extension_size["Average File Size (MBs)"] = by_extension_size[
        "Average File Size (MBs)"
    ].map("{:.2f}".format)
    # format the size column
    by_extension_size = format_dataframe_size_column(by_extension_size, ["size"])
    # Rename the other columns
    by_extension_size = by_extension_size.rename(
        columns={
            "extension": "File Extension",
            "count": "Number of Files",
            "size": "Total Size (PBs)",
        }
    )

    gr.HTML(div_px(5))
    gr.Markdown(
        "This tabular view shows the same top 20 file extensions by total stored size, number of files, and average file size."
    )
    gr.Dataframe(
        by_extension_size[
            [
                "File Extension",
                "Total Size (PBs)",
                "Number of Files",
                "Average File Size (MBs)",
            ]
        ]
    )

    gr.HTML(div_px(5))
    gr.Markdown("### Storage Growth by File Extension (Monthly PBs Added)")
    gr.Markdown(
        "The following area chart shows the number of bytes added to LFS storage each month, faceted by file extension."
    )
    gr.Plot(area_plot_by_extension_month(by_extension_month))

    gr.HTML(div_px(5))
    gr.Markdown(
        "To dig deeper, use the dropdown to filter by file extension and see the bytes added (in TBs) each month for specific file types."
    )

    # get the unique values in the extension column and remove any empty strings
    extension_choices = [
        x for x in by_extension_month["extension"].unique().tolist() if x != ""
    ]

    # build a dropdown using the unique values in the extension column
    extension = gr.Dropdown(
        choices=extension_choices,
        multiselect=True,
        label="File Extension",
    )
    _by_extension_month = gr.State(by_extension_month)
    gr.Plot(filter_by_extension_month, inputs=[_by_extension_month, extension])

    gr.HTML(div_px(25))
    # Optimizations

    gr.Markdown("## Optimization 1: File-level Deduplication")
    gr.Markdown(
        "The first improvement we can make to Hub storage is to add file-level deduplication. Since forking any Hub repository makes copies of the files, a scan of existing files unsurprisingly shows that some files match exactly. The following chart shows the storage growth chart from above with additional dashed lines showing the potential savings from deduplicating at the file level."
    )
    dedupe_fig = cumulative_growth_plot_analysis(
        cumulative_df, cumulative_df_compressed
    )
    gr.Plot(dedupe_fig)

    gr.HTML(div_px(5))
    # @TODO Talk to Allison about variant="panel"
    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown("### Current Storage Usage + File-level Deduplication")
            gr.Markdown(
                "This simple change to the storage backend will save 3.24 PBs (the equivalent of 7.2 Common Crawls)."
            )
        with gr.Column(scale=3):
            # Convert the total size to petabytes and format to two decimal places
            gr.Dataframe(by_repo_type)

    gr.HTML(div_px(5))
    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown("### Month-to-Month Growth + File-level Deduplication")
            gr.Markdown(
                "This table shows month-to-month growth in model, dataset, and space storage. In 2024, the Hub has averaged nearly **2.3 PBs uploaded to Git LFS per month**. Deduplicating at the file level saves nearly 225 TB (half a Common Crawl) monthly."
            )
        with gr.Column(scale=3):
            gr.Dataframe(last_10_months)

# launch the dang thing
demo.launch()