Spaces:
Sleeping
Sleeping
initial commit
Browse files- .gitignore +1 -0
- README.md +5 -7
- app.py +240 -0
- poetry.lock +0 -0
- pyproject.toml +19 -0
- requirements.txt +54 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
__pycache__/
|
README.md
CHANGED
@@ -1,13 +1,11 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 5.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
short_description: Visualize a day of global upload traffic on the Hub.
|
11 |
---
|
12 |
-
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: CAS PoPs Analysis
|
3 |
+
emoji: π
|
4 |
+
colorFrom: pink
|
5 |
+
colorTo: red
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 5.3.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
short_description: Visualize a day of global upload traffic on the Hub.
|
11 |
---
|
|
|
|
app.py
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pylint: disable=no-member
|
2 |
+
import pandas as pd
|
3 |
+
import gradio as gr
|
4 |
+
import plotly.express as px
|
5 |
+
import plotly.graph_objects as go
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
s3_aggregation_df = pd.read_parquet(
|
9 |
+
"hf://datasets/xet-team/cas-pops-analysis-data/aggregated_s3_logs.parquet"
|
10 |
+
)
|
11 |
+
aws_regions = pd.read_parquet(
|
12 |
+
"hf://datasets/xet-team/cas-pops-analysis-data/regions.parquet"
|
13 |
+
)
|
14 |
+
|
15 |
+
|
16 |
+
sum_request_count = s3_aggregation_df["request_count"].sum()
|
17 |
+
sum_object_size = s3_aggregation_df["object_size"].sum()
|
18 |
+
n_unique_countries = s3_aggregation_df["country_code"].nunique()
|
19 |
+
|
20 |
+
unique_regions = list(s3_aggregation_df["region"].unique())
|
21 |
+
unique_countries = list(s3_aggregation_df["country_name"].unique())
|
22 |
+
all_regions_countries = unique_regions + unique_countries
|
23 |
+
|
24 |
+
agg_by_region = (
|
25 |
+
s3_aggregation_df.groupby(["region"])[["object_size", "request_count"]]
|
26 |
+
.sum()
|
27 |
+
.reset_index()
|
28 |
+
)
|
29 |
+
agg_by_region["object_size_pct"] = (
|
30 |
+
agg_by_region["object_size"] / agg_by_region["object_size"].sum()
|
31 |
+
)
|
32 |
+
agg_by_region["request_count_pct"] = (
|
33 |
+
agg_by_region["request_count"] / agg_by_region["request_count"].sum()
|
34 |
+
)
|
35 |
+
agg_by_region["object_size_pct_fmt"] = agg_by_region["object_size_pct"].apply(
|
36 |
+
lambda x: f"{100*x:.2f}"
|
37 |
+
)
|
38 |
+
agg_by_region["request_pct_fmt"] = agg_by_region["request_count_pct"].apply(
|
39 |
+
lambda x: f"{100*x:.2f}"
|
40 |
+
)
|
41 |
+
|
42 |
+
|
43 |
+
def remap_radio_value(value):
|
44 |
+
return "object_size" if value == "Upload size" else "request_count"
|
45 |
+
|
46 |
+
|
47 |
+
def pareto_chart(sort_by, global_filter="All"):
|
48 |
+
sort_by = remap_radio_value(sort_by)
|
49 |
+
title = sort_by.replace("_", " ").title()
|
50 |
+
_df = (
|
51 |
+
s3_aggregation_df.groupby(["country_code", "country_name", "region"])[sort_by]
|
52 |
+
.sum()
|
53 |
+
.reset_index()
|
54 |
+
)
|
55 |
+
if global_filter != "All":
|
56 |
+
if global_filter in unique_regions:
|
57 |
+
_df = _df[_df["region"] == global_filter]
|
58 |
+
|
59 |
+
_df = _df.sort_values(by=sort_by, ascending=False)
|
60 |
+
_df["cumulative_percentage"] = _df[sort_by].cumsum() / _df[sort_by].sum() * 100
|
61 |
+
|
62 |
+
_df = _df.head(20)
|
63 |
+
if global_filter != "All":
|
64 |
+
_df = _df.head(10)
|
65 |
+
|
66 |
+
fig = go.Figure()
|
67 |
+
fig.add_trace(
|
68 |
+
go.Bar(
|
69 |
+
x=_df["country_code"],
|
70 |
+
y=_df[sort_by],
|
71 |
+
name=title,
|
72 |
+
hovertext=_df["country_name"],
|
73 |
+
)
|
74 |
+
)
|
75 |
+
fig.add_trace(
|
76 |
+
go.Scatter(
|
77 |
+
x=_df["country_code"],
|
78 |
+
y=_df["cumulative_percentage"],
|
79 |
+
yaxis="y2",
|
80 |
+
name="Cumulative Percentage",
|
81 |
+
mode="lines+markers",
|
82 |
+
)
|
83 |
+
)
|
84 |
+
|
85 |
+
region = global_filter + " region" if global_filter != "All" else "All Regions"
|
86 |
+
# Update layout
|
87 |
+
if title == "Object Size":
|
88 |
+
title = "Uploaded Data (TB)"
|
89 |
+
else:
|
90 |
+
title = "Requests"
|
91 |
+
fig.update_layout(
|
92 |
+
title=f"Top {_df.shape[0]} Countries by Total {title} in {region}",
|
93 |
+
xaxis_title="Country ISO Code",
|
94 |
+
yaxis_title=title,
|
95 |
+
yaxis2=dict(title="Cumulative Percentage", overlaying="y", side="right"),
|
96 |
+
xaxis=dict(range=[-0.5, len(_df["country_code"]) - 0.5]),
|
97 |
+
legend=dict(orientation="h"),
|
98 |
+
)
|
99 |
+
fig.add_hline(
|
100 |
+
y=80,
|
101 |
+
line_dash="dot",
|
102 |
+
annotation_text="",
|
103 |
+
annotation_position="top right",
|
104 |
+
yref="y2",
|
105 |
+
)
|
106 |
+
return fig
|
107 |
+
|
108 |
+
|
109 |
+
def manually_animated_choropleth_filter(hour, df_column, global_filter):
|
110 |
+
df_column = remap_radio_value(df_column)
|
111 |
+
hour = hour - 1
|
112 |
+
if global_filter != "All":
|
113 |
+
min_range = s3_aggregation_df[s3_aggregation_df["region"] == global_filter][
|
114 |
+
df_column
|
115 |
+
].min()
|
116 |
+
max_range = s3_aggregation_df[s3_aggregation_df["region"] == global_filter][
|
117 |
+
df_column
|
118 |
+
].max()
|
119 |
+
else:
|
120 |
+
min_range = s3_aggregation_df[df_column].min()
|
121 |
+
max_range = s3_aggregation_df[df_column].max()
|
122 |
+
|
123 |
+
_df = s3_aggregation_df[s3_aggregation_df["hour"] == hour]
|
124 |
+
if global_filter != "All":
|
125 |
+
if global_filter in unique_regions:
|
126 |
+
_df = _df[_df["region"] == global_filter]
|
127 |
+
|
128 |
+
title = df_column.replace("_", " ").title()
|
129 |
+
fig = px.choropleth(
|
130 |
+
data_frame=_df,
|
131 |
+
locations="country_code",
|
132 |
+
color=df_column,
|
133 |
+
color_continuous_scale=px.colors.sequential.Plasma,
|
134 |
+
projection="natural earth",
|
135 |
+
height=800,
|
136 |
+
hover_name="country_name",
|
137 |
+
hover_data=df_column,
|
138 |
+
range_color=[min_range, max_range],
|
139 |
+
)
|
140 |
+
if title == "Object Size":
|
141 |
+
title = "Global Distribution of Uploaded Data (TB)"
|
142 |
+
else:
|
143 |
+
title = "Global Distribution of Requests"
|
144 |
+
fig.update_layout(
|
145 |
+
title_text=title,
|
146 |
+
geo=dict(showframe=False, showcoastlines=False),
|
147 |
+
margin=dict(l=0, r=0, t=0, b=0),
|
148 |
+
)
|
149 |
+
return fig
|
150 |
+
|
151 |
+
|
152 |
+
with gr.Blocks(theme="citrus", fill_width=False) as demo:
|
153 |
+
|
154 |
+
gr.Markdown(
|
155 |
+
"""
|
156 |
+
# A Global Analysis of Hub Uploads
|
157 |
+
"""
|
158 |
+
)
|
159 |
+
|
160 |
+
gr.HTML(
|
161 |
+
f"<div id='global' style='font-size:16px;color:var(--body-text-color)'><span style='background-color:#f59e0b;color:black;padding:2px'>{n_unique_countries}</span> countries developing, sending <span style='background-color:#f59e0b;color:black;padding:2px'>{sum_request_count:,}</span> upload requests, and pushing over <span style='background-color:#f59e0b;color:black;padding:2px'>{sum_object_size / 1e+12:.2f}TB</span> to the Hub in 24 hours.</div>"
|
162 |
+
)
|
163 |
+
|
164 |
+
gr.Markdown(
|
165 |
+
"Use the slider below to view the data by hour. Select `Upload Size` to see total uploaded size in bytes, or `Requests` to show the cumulative number of requests from each country."
|
166 |
+
)
|
167 |
+
|
168 |
+
gr.Markdown(
|
169 |
+
"Xet-backed storage uses a [content-addressable store (CAS)](https://en.wikipedia.org/wiki/Content-addressable_storage) as an integral part of its architecture. This enables efficient deduplication and optimized data storage, making it ideal for our needs. As we re-architect uploads and downloads on the Hub, we are inserting a CAS as the first stop for content distribution. To see how uploads are routed to each CAS cluster in our architecture, use the drop-down menu to filter by AWS region. For more details, check out our accompanying blog post."
|
170 |
+
)
|
171 |
+
|
172 |
+
with gr.Row():
|
173 |
+
with gr.Group():
|
174 |
+
with gr.Column(scale=1):
|
175 |
+
hour = gr.Slider(minimum=1, step=1, maximum=24, label="Hour")
|
176 |
+
with gr.Row():
|
177 |
+
aggregate_by = gr.Radio(
|
178 |
+
choices=["Upload size", "Requests"],
|
179 |
+
value="Upload size",
|
180 |
+
label="View by total upload size in bytes or cumulative requests from a country",
|
181 |
+
)
|
182 |
+
countries = gr.Dropdown(
|
183 |
+
choices=["All"] + unique_regions,
|
184 |
+
label="Filter by CAS AWS region",
|
185 |
+
multiselect=False,
|
186 |
+
value="All",
|
187 |
+
)
|
188 |
+
chloropleth_map = gr.Plot()
|
189 |
+
|
190 |
+
# Load the map and listen to changes on the year slider updating the map accordingly
|
191 |
+
demo.load(
|
192 |
+
manually_animated_choropleth_filter,
|
193 |
+
inputs=[hour, aggregate_by, countries],
|
194 |
+
outputs=chloropleth_map,
|
195 |
+
)
|
196 |
+
hour.change(
|
197 |
+
manually_animated_choropleth_filter,
|
198 |
+
inputs=[hour, aggregate_by, countries],
|
199 |
+
outputs=chloropleth_map,
|
200 |
+
show_progress=False,
|
201 |
+
)
|
202 |
+
aggregate_by.change(
|
203 |
+
manually_animated_choropleth_filter,
|
204 |
+
inputs=[hour, aggregate_by, countries],
|
205 |
+
outputs=chloropleth_map,
|
206 |
+
show_progress=False,
|
207 |
+
)
|
208 |
+
countries.change(
|
209 |
+
manually_animated_choropleth_filter,
|
210 |
+
inputs=[hour, aggregate_by, countries],
|
211 |
+
outputs=chloropleth_map,
|
212 |
+
show_progress=False,
|
213 |
+
)
|
214 |
+
|
215 |
+
gr.Markdown(
|
216 |
+
"The Pareto chart below shows the top countries by upload size or request count, with a cumulative line indicating the percentage of total upload volume or requests represented by these countries. Like the map above, the values change as you filter by AWS region."
|
217 |
+
)
|
218 |
+
|
219 |
+
bar_chart = gr.Plot()
|
220 |
+
demo.load(
|
221 |
+
pareto_chart,
|
222 |
+
inputs=[aggregate_by, countries],
|
223 |
+
outputs=bar_chart,
|
224 |
+
)
|
225 |
+
aggregate_by.change(
|
226 |
+
pareto_chart,
|
227 |
+
inputs=[aggregate_by, countries],
|
228 |
+
outputs=bar_chart,
|
229 |
+
show_progress=False,
|
230 |
+
)
|
231 |
+
countries.change(
|
232 |
+
pareto_chart,
|
233 |
+
inputs=[aggregate_by, countries],
|
234 |
+
outputs=bar_chart,
|
235 |
+
show_progress=False,
|
236 |
+
)
|
237 |
+
|
238 |
+
demo.launch()
|
239 |
+
|
240 |
+
# TODO - add bandwidth slowdown
|
poetry.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pyproject.toml
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[tool.poetry]
|
2 |
+
name = "cas-pops-analysis"
|
3 |
+
version = "0.1.0"
|
4 |
+
description = ""
|
5 |
+
authors = ["jsulz <[email protected]>"]
|
6 |
+
readme = "README.md"
|
7 |
+
|
8 |
+
[tool.poetry.dependencies]
|
9 |
+
python = "^3.12"
|
10 |
+
gradio = "^5.3.0"
|
11 |
+
pandas = "^2.2.3"
|
12 |
+
plotly = "^5.24.1"
|
13 |
+
pyarrow = "^17.0.0"
|
14 |
+
numpy = "^2.1.2"
|
15 |
+
|
16 |
+
|
17 |
+
[build-system]
|
18 |
+
requires = ["poetry-core"]
|
19 |
+
build-backend = "poetry.core.masonry.api"
|
requirements.txt
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
aiofiles==23.2.1
|
2 |
+
annotated-types==0.7.0
|
3 |
+
anyio==4.6.2.post1
|
4 |
+
certifi==2024.8.30
|
5 |
+
charset-normalizer==3.4.0
|
6 |
+
click==8.1.7
|
7 |
+
colorama==0.4.6
|
8 |
+
fastapi==0.115.3
|
9 |
+
ffmpy==0.4.0
|
10 |
+
filelock==3.16.1
|
11 |
+
fsspec==2024.10.0
|
12 |
+
gradio-client==1.4.2
|
13 |
+
gradio==5.3.0
|
14 |
+
h11==0.14.0
|
15 |
+
httpcore==1.0.6
|
16 |
+
httpx==0.27.2
|
17 |
+
huggingface-hub==0.26.1
|
18 |
+
idna==3.10
|
19 |
+
jinja2==3.1.4
|
20 |
+
markdown-it-py==3.0.0
|
21 |
+
markupsafe==2.1.5
|
22 |
+
mdurl==0.1.2
|
23 |
+
numpy==2.1.2
|
24 |
+
orjson==3.10.9
|
25 |
+
packaging==24.1
|
26 |
+
pandas==2.2.3
|
27 |
+
pillow==10.4.0
|
28 |
+
plotly==5.24.1
|
29 |
+
pyarrow==17.0.0
|
30 |
+
pydantic-core==2.23.4
|
31 |
+
pydantic==2.9.2
|
32 |
+
pydub==0.25.1
|
33 |
+
pygments==2.18.0
|
34 |
+
python-dateutil==2.9.0.post0
|
35 |
+
python-multipart==0.0.12
|
36 |
+
pytz==2024.2
|
37 |
+
pyyaml==6.0.2
|
38 |
+
requests==2.32.3
|
39 |
+
rich==13.9.2
|
40 |
+
ruff==0.7.0
|
41 |
+
semantic-version==2.10.0
|
42 |
+
shellingham==1.5.4
|
43 |
+
six==1.16.0
|
44 |
+
sniffio==1.3.1
|
45 |
+
starlette==0.41.0
|
46 |
+
tenacity==9.0.0
|
47 |
+
tomlkit==0.12.0
|
48 |
+
tqdm==4.66.5
|
49 |
+
typer==0.12.5
|
50 |
+
typing-extensions==4.12.2
|
51 |
+
tzdata==2024.2
|
52 |
+
urllib3==2.2.3
|
53 |
+
uvicorn==0.32.0
|
54 |
+
websockets==12.0
|