Spaces:
Runtime error
Runtime error
xcurvnubaim
commited on
Commit
·
765c987
1
Parent(s):
1f96cd2
fix: fix png file
Browse files
main.py
CHANGED
@@ -15,14 +15,14 @@ with open("labels.txt") as f:
|
|
15 |
def classify_image(img):
|
16 |
# Resize the input image to the expected shape (224, 224)
|
17 |
img_array = np.asarray(img.resize((224, 224)))[..., :3]
|
18 |
-
img_array = img_array.reshape((
|
19 |
img_array = tf.keras.applications.efficientnet.preprocess_input(img_array)
|
20 |
prediction = model.predict(img_array).flatten()
|
21 |
confidences = {labels[i]: float(prediction[i]) for i in range(90)}
|
22 |
# Sort the confidences dictionary by value and get the top 3 items
|
23 |
-
top_3_confidences = dict(sorted(confidences.items(), key=lambda item: item[1], reverse=True)[:3])
|
24 |
|
25 |
-
return
|
26 |
|
27 |
@app.post("/predict")
|
28 |
async def predict(file: bytes = File(...)):
|
|
|
15 |
def classify_image(img):
|
16 |
# Resize the input image to the expected shape (224, 224)
|
17 |
img_array = np.asarray(img.resize((224, 224)))[..., :3]
|
18 |
+
img_array = img_array.reshape((1, 224, 224, 3)) # Add batch dimension
|
19 |
img_array = tf.keras.applications.efficientnet.preprocess_input(img_array)
|
20 |
prediction = model.predict(img_array).flatten()
|
21 |
confidences = {labels[i]: float(prediction[i]) for i in range(90)}
|
22 |
# Sort the confidences dictionary by value and get the top 3 items
|
23 |
+
# top_3_confidences = dict(sorted(confidences.items(), key=lambda item: item[1], reverse=True)[:3])
|
24 |
|
25 |
+
return confidences
|
26 |
|
27 |
@app.post("/predict")
|
28 |
async def predict(file: bytes = File(...)):
|