# 1. spacesを最初にインポート import spaces # 2. その後で他のGPU関連のライブラリをインポート import torch import transformers import gradio as gr import numpy as np import random #from diffusers import DiffusionPipeline from diffusers import StableDiffusionXLPipeline, TCDScheduler from huggingface_hub import hf_hub_download from peft import LoraConfig, get_peft_model MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1216 base_model_id = "Laxhar/noobai-XL-1.0" repo_name = "ByteDance/Hyper-SD" # Take 2-steps lora as an example ckpt_name = "Hyper-SDXL-8steps-lora.safetensors" # Load model. #pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) pipe = StableDiffusionXLPipeline.from_pretrained( base_model_id, torch_dtype=torch.float16, use_safetensors=True, custom_pipeline="lpw_stable_diffusion_xl", add_watermarker=False ) pipe.to('cuda') #pipe = DiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16, variant="fp16").to("cuda") #pipe.load_lora_weights(repo_name, ckpt_name) pipe.load_lora_weights(repo_name, weight_name=ckpt_name) pipe.fuse_lora() # Ensure ddim scheduler timestep spacing set as trailing !!! pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config) # lower eta results in more detail prompt = "1girl, solo, upper body, v, smile, looking at viewer, outdoors, night, masterpiece, best quality, very aesthetic, absurdres" negative_prompt = "(worst quality),(low quality),lowres,(bad anatomy),(deformed anatomy),(deformed fingers),(blurry),(extra finger),(extra arms), (extra legs),(monochrome:1.4),(grayscale:1.4),((watermark)),(overweight female:1.6),((pointy ears)),mascot,stuffed human, stuffed animal,chibi,english text, chinese text, korean text" @spaces.GPU def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) image = pipe( prompt = prompt+", masterpiece, best quality, very aesthetic, absurdres", negative_prompt = negative_prompt, guidance_scale = guidance_scale, num_inference_steps = num_inference_steps, width = width, height = height, generator = generator ).images[0] return image css=""" #col-container { margin: 0 auto; max-width: 520px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f""" # Text-to-Image Demo using [noobai XL 1.0](https://huggingface.co/Laxhar/noobai-XL-1.0) """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=False, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=832, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1216, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=20.0, step=0.1, value=7, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=28, step=1, value=28, ) run_button.click( fn = infer, inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs = [result] ) demo.queue().launch()