testsd / app.py
xbarusui's picture
Update app.py
0edfd6f verified
raw
history blame
5.02 kB
# 1. spacesを最初にインポート
import spaces
# 2. その後で他のGPU関連のライブラリをインポート
import torch
import transformers
import gradio as gr
import numpy as np
import random
#from diffusers import DiffusionPipeline
from diffusers import StableDiffusionXLPipeline, TCDScheduler
from huggingface_hub import hf_hub_download
from peft import LoraConfig, get_peft_model
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1216
base_model_id = "Laxhar/noobai-XL-1.0"
repo_name = "ByteDance/Hyper-SD"
# Take 2-steps lora as an example
ckpt_name = "Hyper-SDXL-8steps-lora.safetensors"
# Load model.
#pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
pipe = StableDiffusionXLPipeline.from_pretrained(
base_model_id,
torch_dtype=torch.float16,
use_safetensors=True,
custom_pipeline="lpw_stable_diffusion_xl",
add_watermarker=False
)
pipe.to('cuda')
#pipe = DiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16, variant="fp16").to("cuda")
pipe.load_lora_weights(hf_hub_download(repo_name, ckpt_name))
pipe.fuse_lora()
# Ensure ddim scheduler timestep spacing set as trailing !!!
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
# lower eta results in more detail
pipe.load_lora_weights(repo_name)
pipe.fuse_lora()
prompt = "1girl, solo, upper body, v, smile, looking at viewer, outdoors, night, masterpiece, best quality, very aesthetic, absurdres"
negative_prompt = "(worst quality),(low quality),lowres,(bad anatomy),(deformed anatomy),(deformed fingers),(blurry),(extra finger),(extra arms), (extra legs),(monochrome:1.4),(grayscale:1.4),((watermark)),(overweight female:1.6),((pointy ears)),mascot,stuffed human, stuffed animal,chibi,english text, chinese text, korean text"
@spaces.GPU
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt = prompt+", masterpiece, best quality, very aesthetic, absurdres",
negative_prompt = negative_prompt,
guidance_scale = guidance_scale,
num_inference_steps = num_inference_steps,
width = width,
height = height,
generator = generator
).images[0]
return image
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# Text-to-Image Demo
using [noobai XL 1.0](https://huggingface.co/Laxhar/noobai-XL-1.0)
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=832,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1216,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=20.0,
step=0.1,
value=7,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=28,
step=1,
value=28,
)
run_button.click(
fn = infer,
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs = [result]
)
demo.queue().launch()