CraftsMan3D / craftsman /utils /callbacks.py
wyysf's picture
update to v1.5
8133633
import os
import shutil
import subprocess
import pytorch_lightning
from craftsman.utils.config import dump_config
from craftsman.utils.misc import parse_version
if parse_version(pytorch_lightning.__version__) > parse_version("1.8"):
from pytorch_lightning.callbacks import Callback
else:
from pytorch_lightning.callbacks.base import Callback
from pytorch_lightning.callbacks.progress import TQDMProgressBar
from pytorch_lightning.utilities.rank_zero import rank_zero_only, rank_zero_warn
class EarlyEnvironmentSetter(Callback):
def __init__(self):
super().__init__()
self.rank_set = False
def setup(self, trainer, pl_module, stage):
if not self.rank_set:
world_size = trainer.num_devices
local_rank = trainer.strategy.local_rank
os.environ['WORLD_SIZE'] = str(world_size)
os.environ['LOCAL_WORLD_SIZE'] = str(world_size)
os.environ['LOCAL_RANK'] = str(local_rank)
os.environ['RANK'] = str(local_rank)
self.rank_set = True
class VersionedCallback(Callback):
def __init__(self, save_root, version=None, use_version=True):
self.save_root = save_root
self._version = version
self.use_version = use_version
@property
def version(self) -> int:
"""Get the experiment version.
Returns:
The experiment version if specified else the next version.
"""
if self._version is None:
self._version = self._get_next_version()
return self._version
def _get_next_version(self):
existing_versions = []
if os.path.isdir(self.save_root):
for f in os.listdir(self.save_root):
bn = os.path.basename(f)
if bn.startswith("version_"):
dir_ver = os.path.splitext(bn)[0].split("_")[1].replace("/", "")
existing_versions.append(int(dir_ver))
if len(existing_versions) == 0:
return 0
return max(existing_versions) + 1
@property
def savedir(self):
if not self.use_version:
return self.save_root
return os.path.join(
self.save_root,
self.version
if isinstance(self.version, str)
else f"version_{self.version}",
)
class CodeSnapshotCallback(VersionedCallback):
def __init__(self, save_root, version=None, use_version=True):
super().__init__(save_root, version, use_version)
def get_file_list(self):
return [
b.decode()
for b in set(
subprocess.check_output(
'git ls-files -- ":!:load/*"', shell=True
).splitlines()
)
| set( # hard code, TODO: use config to exclude folders or files
subprocess.check_output(
"git ls-files --others --exclude-standard", shell=True
).splitlines()
)
]
@rank_zero_only
def save_code_snapshot(self):
os.makedirs(self.savedir, exist_ok=True)
for f in self.get_file_list():
if not os.path.exists(f) or os.path.isdir(f):
continue
os.makedirs(os.path.join(self.savedir, os.path.dirname(f)), exist_ok=True)
shutil.copyfile(f, os.path.join(self.savedir, f))
def on_fit_start(self, trainer, pl_module):
try:
self.save_code_snapshot()
except:
rank_zero_warn(
"Code snapshot is not saved. Please make sure you have git installed and are in a git repository."
)
class ConfigSnapshotCallback(VersionedCallback):
def __init__(self, config_path, config, save_root, version=None, use_version=True):
super().__init__(save_root, version, use_version)
self.config_path = config_path
self.config = config
@rank_zero_only
def save_config_snapshot(self):
os.makedirs(self.savedir, exist_ok=True)
dump_config(os.path.join(self.savedir, "parsed.yaml"), self.config)
shutil.copyfile(self.config_path, os.path.join(self.savedir, "raw.yaml"))
def on_fit_start(self, trainer, pl_module):
self.save_config_snapshot()
class CustomProgressBar(TQDMProgressBar):
def get_metrics(self, *args, **kwargs):
# don't show the version number
items = super().get_metrics(*args, **kwargs)
items.pop("v_num", None)
return items
class ProgressCallback(Callback):
def __init__(self, save_path):
super().__init__()
self.save_path = save_path
self._file_handle = None
@property
def file_handle(self):
if self._file_handle is None:
self._file_handle = open(self.save_path, "w")
return self._file_handle
@rank_zero_only
def write(self, msg: str) -> None:
self.file_handle.seek(0)
self.file_handle.truncate()
self.file_handle.write(msg)
self.file_handle.flush()
@rank_zero_only
def on_train_batch_end(self, trainer, pl_module, *args, **kwargs):
self.write(
f"Generation progress: {pl_module.true_global_step / trainer.max_steps * 100:.2f}%"
)
@rank_zero_only
def on_validation_start(self, trainer, pl_module):
self.write(f"Rendering validation image ...")
@rank_zero_only
def on_test_start(self, trainer, pl_module):
self.write(f"Rendering video ...")
@rank_zero_only
def on_predict_start(self, trainer, pl_module):
self.write(f"Exporting mesh assets ...")