import os import time import random import datetime import os.path as osp from functools import partial import tqdm from omegaconf import OmegaConf import torch import gradio as gr from mld.config import get_module_config from mld.data.get_data import get_dataset from mld.models.modeltype.mld import MLD from mld.utils.utils import set_seed from mld.data.humanml.utils.plot_script import plot_3d_motion os.environ["TOKENIZERS_PARALLELISM"] = "false" WEBSITE = """
""" WEBSITE_bottom = """ """ EXAMPLES = [ "a person does a jump", "a person waves both arms in the air.", "The person takes 4 steps backwards.", "this person bends forward as if to bow.", "The person was pushed but did not fall.", "a man walks forward in a snake like pattern.", "a man paces back and forth along the same line.", "with arms out to the sides a person walks forward", "A man bends down and picks something up with his right hand.", "The man walked forward, spun right on one foot and walked back to his original position.", "a person slightly bent over with right hand pressing against the air walks forward slowly" ] if not os.path.exists("./experiments_t2m/"): os.system("bash prepare/download_pretrained_models.sh") if not os.path.exists('./deps/glove/'): os.system("bash prepare/download_glove.sh") if not os.path.exists('./deps/sentence-t5-large/'): os.system("bash prepare/prepare_t5.sh") if not os.path.exists('./deps/t2m/'): os.system("bash prepare/download_t2m_evaluators.sh") if not os.path.exists('./datasets/humanml3d/'): os.system("bash prepare/prepare_tiny_humanml3d.sh") DEFAULT_TEXT = "cheerfully walking forward with each step." MAX_VIDEOS = 8 NUM_ROWS = 2 NUM_COLS = MAX_VIDEOS // NUM_ROWS EXAMPLES_PER_PAGE = 12 T2M_CFG = "./configs/mld_t2m.yaml" step_map = {1: 10, 2: 25, 4: 50} device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') print("device: ", device) cfg = OmegaConf.load(T2M_CFG) cfg_root = os.path.dirname(T2M_CFG) cfg_model = get_module_config(cfg.model, cfg.model.target, cfg_root) cfg = OmegaConf.merge(cfg, cfg_model) set_seed(cfg.SEED_VALUE) name_time_str = osp.join(cfg.NAME, datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")) cfg.output_dir = osp.join(cfg.TEST_FOLDER, name_time_str) vis_dir = osp.join(cfg.output_dir, 'samples') os.makedirs(cfg.output_dir, exist_ok=False) os.makedirs(vis_dir, exist_ok=False) state_dict = torch.load(cfg.TEST.CHECKPOINTS, map_location="cpu")["state_dict"] print("Loading checkpoints from {}".format(cfg.TEST.CHECKPOINTS)) is_lcm = False lcm_key = 'denoiser.time_embedding.cond_proj.weight' # unique key for CFG if lcm_key in state_dict: is_lcm = True time_cond_proj_dim = state_dict[lcm_key].shape[1] cfg.model.denoiser.params.time_cond_proj_dim = time_cond_proj_dim print(f'Is LCM: {is_lcm}') dataset = get_dataset(cfg) model = MLD(cfg, dataset) model.to(device) model.eval() model.requires_grad_(False) model.load_state_dict(state_dict) FPS = eval(f"cfg.DATASET.{cfg.DATASET.NAME.upper()}.FRAME_RATE") @torch.no_grad() def generate(text_, motion_len_): batch = {"text": [text_] * MAX_VIDEOS, "length": [motion_len_] * MAX_VIDEOS} s = time.time() joints = model(batch)[0] runtime_infer = round(time.time() - s, 3) s = time.time() path = [] for i in tqdm.tqdm(range(len(joints))): uid = random.randrange(999999999) video_path = osp.join(vis_dir, f"sample_{uid}.mp4") plot_3d_motion(video_path, joints[i].detach().cpu().numpy(), '', fps=FPS) path.append(video_path) runtime_draw = round(time.time() - s, 3) runtime_info = f'Inference {len(joints)} motions, Runtime (Inference): {runtime_infer}s, ' \ f'Runtime (Draw Skeleton): {runtime_draw}s, device: {device} ' return path, runtime_info def generate_component(generate_function, text_, motion_len_, num_inference_steps_, guidance_scale_): if text_ == "" or text_ is None: return [None] * MAX_VIDEOS + ["Please modify the text prompt."] model.cfg.model.scheduler.num_inference_steps = step_map[num_inference_steps_] model.guidance_scale = guidance_scale_ motion_len_ = max(36, min(int(float(motion_len_) * FPS), 196)) paths, info = generate_function(text_, motion_len_) paths = paths + [None] * (MAX_VIDEOS - len(paths)) return paths + [info] theme = gr.themes.Default(primary_hue="purple", secondary_hue="gray") generate_and_show = partial(generate_component, generate) with gr.Blocks(theme=theme) as demo: gr.HTML(WEBSITE) videos = [] with gr.Row(): with gr.Column(scale=3): text = gr.Textbox( show_label=True, label="Text prompt", value=DEFAULT_TEXT, ) with gr.Row(): with gr.Column(scale=2): motion_len = gr.Slider( minimum=1.8, maximum=9.8, step=0.2, value=5.0, label="Motion length", info="Motion duration in seconds: [1.8s, 9.8s] (FPS = 20)." ) with gr.Column(scale=1): num_inference_steps = gr.Radio( [1, 2, 4], label="Inference steps", value=4, info="Number of inference steps.", ) cfg = gr.Slider( minimum=1, maximum=15, step=0.5, value=7.5, label="CFG", info="Classifier-free diffusion guidance.", ) gen_btn = gr.Button("Generate", variant="primary") clear = gr.Button("Clear", variant="secondary") results = gr.Textbox(show_label=True, label='Inference info (runtime and device)', info='Real-time inference cannot be achieved using the free CPU. Local GPU deployment is recommended.', interactive=False) with gr.Column(scale=2): examples = gr.Examples( examples=EXAMPLES, inputs=[text], examples_per_page=EXAMPLES_PER_PAGE) for i in range(NUM_ROWS): with gr.Row(): for j in range(NUM_COLS): video = gr.Video(autoplay=True, loop=True) videos.append(video) # gr.HTML(WEBSITE_bottom) gen_btn.click( fn=generate_and_show, inputs=[text, motion_len, num_inference_steps, cfg], outputs=videos + [results], ) text.submit( fn=generate_and_show, inputs=[text, motion_len, num_inference_steps, cfg], outputs=videos + [results], ) def clear_videos(): return [None] * MAX_VIDEOS + [DEFAULT_TEXT] + [None] clear.click(fn=clear_videos, outputs=videos + [text] + [results]) demo.launch()