|
import os |
|
import pickle |
|
import sys |
|
import datetime |
|
import logging |
|
import os.path as osp |
|
|
|
from omegaconf import OmegaConf |
|
|
|
import torch |
|
|
|
from mld.config import parse_args |
|
from mld.data.get_data import get_dataset |
|
from mld.models.modeltype.mld import MLD |
|
from mld.models.modeltype.vae import VAE |
|
from mld.utils.utils import set_seed, move_batch_to_device |
|
from mld.data.humanml.utils.plot_script import plot_3d_motion |
|
from mld.utils.temos_utils import remove_padding |
|
|
|
os.environ["TOKENIZERS_PARALLELISM"] = "false" |
|
|
|
|
|
def load_example_hint_input(text_path: str) -> tuple: |
|
with open(text_path, "r") as f: |
|
lines = f.readlines() |
|
|
|
n_frames, control_type_ids, control_hint_ids = [], [], [] |
|
for line in lines: |
|
s = line.strip() |
|
n_frame, control_type_id, control_hint_id = s.split(' ') |
|
n_frames.append(int(n_frame)) |
|
control_type_ids.append(int(control_type_id)) |
|
control_hint_ids.append(int(control_hint_id)) |
|
|
|
return n_frames, control_type_ids, control_hint_ids |
|
|
|
|
|
def load_example_input(text_path: str) -> tuple: |
|
with open(text_path, "r") as f: |
|
lines = f.readlines() |
|
|
|
texts, lens = [], [] |
|
for line in lines: |
|
s = line.strip() |
|
s_l = s.split(" ")[0] |
|
s_t = s[(len(s_l) + 1):] |
|
lens.append(int(s_l)) |
|
texts.append(s_t) |
|
return texts, lens |
|
|
|
|
|
def main(): |
|
cfg = parse_args() |
|
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') |
|
set_seed(cfg.SEED_VALUE) |
|
|
|
name_time_str = osp.join(cfg.NAME, "demo_" + datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")) |
|
cfg.output_dir = osp.join(cfg.TEST_FOLDER, name_time_str) |
|
vis_dir = osp.join(cfg.output_dir, 'samples') |
|
os.makedirs(cfg.output_dir, exist_ok=False) |
|
os.makedirs(vis_dir, exist_ok=False) |
|
|
|
steam_handler = logging.StreamHandler(sys.stdout) |
|
file_handler = logging.FileHandler(osp.join(cfg.output_dir, 'output.log')) |
|
logging.basicConfig(level=logging.INFO, |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
handlers=[steam_handler, file_handler]) |
|
logger = logging.getLogger(__name__) |
|
|
|
OmegaConf.save(cfg, osp.join(cfg.output_dir, 'config.yaml')) |
|
|
|
state_dict = torch.load(cfg.TEST.CHECKPOINTS, map_location="cpu")["state_dict"] |
|
logger.info("Loading checkpoints from {}".format(cfg.TEST.CHECKPOINTS)) |
|
|
|
|
|
is_vae = False |
|
vae_key = 'vae.skel_embedding.weight' |
|
if vae_key in state_dict: |
|
is_vae = True |
|
logger.info(f'Is VAE: {is_vae}') |
|
|
|
|
|
is_mld = False |
|
mld_key = 'denoiser.time_embedding.linear_1.weight' |
|
if mld_key in state_dict: |
|
is_mld = True |
|
logger.info(f'Is MLD: {is_mld}') |
|
|
|
|
|
is_lcm = False |
|
lcm_key = 'denoiser.time_embedding.cond_proj.weight' |
|
if lcm_key in state_dict: |
|
is_lcm = True |
|
time_cond_proj_dim = state_dict[lcm_key].shape[1] |
|
cfg.model.denoiser.params.time_cond_proj_dim = time_cond_proj_dim |
|
logger.info(f'Is LCM: {is_lcm}') |
|
|
|
|
|
cn_key = "controlnet.controlnet_cond_embedding.0.weight" |
|
is_controlnet = True if cn_key in state_dict else False |
|
cfg.model.is_controlnet = is_controlnet |
|
logger.info(f'Is Controlnet: {is_controlnet}') |
|
|
|
if is_mld or is_lcm or is_controlnet: |
|
target_model_class = MLD |
|
else: |
|
target_model_class = VAE |
|
|
|
if cfg.optimize: |
|
assert cfg.model.get('noise_optimizer') is not None |
|
cfg.model.noise_optimizer.params.optimize = True |
|
logger.info('Optimization enabled. Set the batch size to 1.') |
|
logger.info(f'Original batch size: {cfg.TEST.BATCH_SIZE}') |
|
cfg.TEST.BATCH_SIZE = 1 |
|
|
|
dataset = get_dataset(cfg) |
|
model = target_model_class(cfg, dataset) |
|
model.to(device) |
|
model.eval() |
|
model.requires_grad_(False) |
|
logger.info(model.load_state_dict(state_dict)) |
|
|
|
FPS = eval(f"cfg.DATASET.{cfg.DATASET.NAME.upper()}.FRAME_RATE") |
|
|
|
if cfg.example is not None and not is_controlnet: |
|
text, length = load_example_input(cfg.example) |
|
for t, l in zip(text, length): |
|
logger.info(f"{l}: {t}") |
|
|
|
batch = {"length": length, "text": text} |
|
|
|
for rep_i in range(cfg.replication): |
|
with torch.no_grad(): |
|
joints = model(batch)[0] |
|
|
|
num_samples = len(joints) |
|
for i in range(num_samples): |
|
res = dict() |
|
pkl_path = osp.join(vis_dir, f"sample_id_{i}_length_{length[i]}_rep_{rep_i}.pkl") |
|
res['joints'] = joints[i].detach().cpu().numpy() |
|
res['text'] = text[i] |
|
res['length'] = length[i] |
|
res['hint'] = None |
|
with open(pkl_path, 'wb') as f: |
|
pickle.dump(res, f) |
|
logger.info(f"Motions are generated here:\n{pkl_path}") |
|
|
|
if not cfg.no_plot: |
|
plot_3d_motion(pkl_path.replace('.pkl', '.mp4'), joints[i].detach().cpu().numpy(), text[i], fps=FPS) |
|
|
|
else: |
|
test_dataloader = dataset.test_dataloader() |
|
for rep_i in range(cfg.replication): |
|
for batch_id, batch in enumerate(test_dataloader): |
|
batch = move_batch_to_device(batch, device) |
|
with torch.no_grad(): |
|
joints, joints_ref = model(batch) |
|
|
|
num_samples = len(joints) |
|
text = batch['text'] |
|
length = batch['length'] |
|
if 'hint' in batch: |
|
hint, hint_mask = batch['hint'], batch['hint_mask'] |
|
hint = dataset.denorm_spatial(hint) * hint_mask |
|
hint = remove_padding(hint, lengths=length) |
|
else: |
|
hint = None |
|
|
|
for i in range(num_samples): |
|
res = dict() |
|
pkl_path = osp.join(vis_dir, f"batch_id_{batch_id}_sample_id_{i}_length_{length[i]}_rep_{rep_i}.pkl") |
|
res['joints'] = joints[i].detach().cpu().numpy() |
|
res['text'] = text[i] |
|
res['length'] = length[i] |
|
res['hint'] = hint[i].detach().cpu().numpy() if hint is not None else None |
|
with open(pkl_path, 'wb') as f: |
|
pickle.dump(res, f) |
|
logger.info(f"Motions are generated here:\n{pkl_path}") |
|
|
|
if not cfg.no_plot: |
|
plot_3d_motion(pkl_path.replace('.pkl', '.mp4'), joints[i].detach().cpu().numpy(), |
|
text[i], fps=FPS, hint=hint[i].detach().cpu().numpy() if hint is not None else None) |
|
|
|
if rep_i == 0: |
|
res['joints'] = joints_ref[i].detach().cpu().numpy() |
|
with open(pkl_path.replace('.pkl', '_ref.pkl'), 'wb') as f: |
|
pickle.dump(res, f) |
|
logger.info(f"Motions are generated here:\n{pkl_path.replace('.pkl', '_ref.pkl')}") |
|
if not cfg.no_plot: |
|
plot_3d_motion(pkl_path.replace('.pkl', '_ref.mp4'), joints_ref[i].detach().cpu().numpy(), |
|
text[i], fps=FPS, hint=hint[i].detach().cpu().numpy() if hint is not None else None) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|