File size: 9,055 Bytes
eb339cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import os
import sys
import logging
import datetime
import os.path as osp
from tqdm.auto import tqdm
from omegaconf import OmegaConf
import torch
import swanlab
import diffusers
import transformers
from torch.utils.tensorboard import SummaryWriter
from diffusers.optimization import get_scheduler
from mld.config import parse_args
from mld.data.get_data import get_dataset
from mld.models.modeltype.mld import MLD
from mld.utils.utils import print_table, set_seed, move_batch_to_device
os.environ["TOKENIZERS_PARALLELISM"] = "false"
def main():
cfg = parse_args()
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
set_seed(cfg.SEED_VALUE)
name_time_str = osp.join(cfg.NAME, datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S"))
cfg.output_dir = osp.join(cfg.FOLDER, name_time_str)
os.makedirs(cfg.output_dir, exist_ok=False)
os.makedirs(f"{cfg.output_dir}/checkpoints", exist_ok=False)
if cfg.vis == "tb":
writer = SummaryWriter(cfg.output_dir)
elif cfg.vis == "swanlab":
writer = swanlab.init(project="MotionLCM",
experiment_name=os.path.normpath(cfg.output_dir).replace(os.path.sep, "-"),
suffix=None, config=dict(**cfg), logdir=cfg.output_dir)
else:
raise ValueError(f"Invalid vis method: {cfg.vis}")
stream_handler = logging.StreamHandler(sys.stdout)
file_handler = logging.FileHandler(osp.join(cfg.output_dir, 'output.log'))
handlers = [file_handler, stream_handler]
logging.basicConfig(level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=handlers)
logger = logging.getLogger(__name__)
OmegaConf.save(cfg, osp.join(cfg.output_dir, 'config.yaml'))
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
assert cfg.model.is_controlnet, "cfg.model.is_controlnet must be true for controlling!"
dataset = get_dataset(cfg)
train_dataloader = dataset.train_dataloader()
val_dataloader = dataset.val_dataloader()
logger.info(f"Loading pretrained model: {cfg.TRAIN.PRETRAINED}")
state_dict = torch.load(cfg.TRAIN.PRETRAINED, map_location="cpu")["state_dict"]
lcm_key = 'denoiser.time_embedding.cond_proj.weight'
is_lcm = False
if lcm_key in state_dict:
is_lcm = True
time_cond_proj_dim = state_dict[lcm_key].shape[1]
cfg.model.denoiser.params.time_cond_proj_dim = time_cond_proj_dim
logger.info(f'Is LCM: {is_lcm}')
model = MLD(cfg, dataset)
logger.info(model.load_state_dict(state_dict, strict=False))
logger.info(model.controlnet.load_state_dict(model.denoiser.state_dict(), strict=False))
model.vae.requires_grad_(False)
model.text_encoder.requires_grad_(False)
model.denoiser.requires_grad_(False)
model.vae.eval()
model.text_encoder.eval()
model.denoiser.eval()
model.to(device)
controlnet_params = list(model.controlnet.parameters())
traj_encoder_params = list(model.traj_encoder.parameters())
params = controlnet_params + traj_encoder_params
params_to_optimize = [{'params': controlnet_params, 'lr': cfg.TRAIN.learning_rate},
{'params': traj_encoder_params, 'lr': cfg.TRAIN.learning_rate_spatial}]
logger.info("learning_rate: {}, learning_rate_spatial: {}".
format(cfg.TRAIN.learning_rate, cfg.TRAIN.learning_rate_spatial))
optimizer = torch.optim.AdamW(
params_to_optimize,
betas=(cfg.TRAIN.adam_beta1, cfg.TRAIN.adam_beta2),
weight_decay=cfg.TRAIN.adam_weight_decay,
eps=cfg.TRAIN.adam_epsilon)
if cfg.TRAIN.max_train_steps == -1:
assert cfg.TRAIN.max_train_epochs != -1
cfg.TRAIN.max_train_steps = cfg.TRAIN.max_train_epochs * len(train_dataloader)
if cfg.TRAIN.checkpointing_steps == -1:
assert cfg.TRAIN.checkpointing_epochs != -1
cfg.TRAIN.checkpointing_steps = cfg.TRAIN.checkpointing_epochs * len(train_dataloader)
if cfg.TRAIN.validation_steps == -1:
assert cfg.TRAIN.validation_epochs != -1
cfg.TRAIN.validation_steps = cfg.TRAIN.validation_epochs * len(train_dataloader)
lr_scheduler = get_scheduler(
cfg.TRAIN.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=cfg.TRAIN.lr_warmup_steps,
num_training_steps=cfg.TRAIN.max_train_steps)
# Train!
logger.info("***** Running training *****")
logging.info(f" Num examples = {len(train_dataloader.dataset)}")
logging.info(f" Num Epochs = {cfg.TRAIN.max_train_epochs}")
logging.info(f" Instantaneous batch size per device = {cfg.TRAIN.BATCH_SIZE}")
logging.info(f" Total optimization steps = {cfg.TRAIN.max_train_steps}")
global_step = 0
@torch.no_grad()
def validation():
model.controlnet.eval()
model.traj_encoder.eval()
val_loss_list = []
for val_batch in tqdm(val_dataloader):
val_batch = move_batch_to_device(val_batch, device)
val_loss_dict = model.allsplit_step(split='val', batch=val_batch)
val_loss_list.append(val_loss_dict)
metrics = model.allsplit_epoch_end()
for loss_k in val_loss_list[0].keys():
metrics[f"Val/{loss_k}"] = sum([d[loss_k] for d in val_loss_list]).item() / len(val_dataloader)
min_val_km = metrics['Metrics/kps_mean_err(m)']
min_val_tj = metrics['Metrics/traj_fail_50cm']
print_table(f'Validation@Step-{global_step}', metrics)
for mk, mv in metrics.items():
if cfg.vis == "tb":
writer.add_scalar(mk, mv, global_step=global_step)
elif cfg.vis == "swanlab":
writer.log({mk: mv}, step=global_step)
model.controlnet.train()
model.traj_encoder.train()
return min_val_km, min_val_tj
min_km, min_tj = validation()
progress_bar = tqdm(range(0, cfg.TRAIN.max_train_steps), desc="Steps")
while True:
for step, batch in enumerate(train_dataloader):
batch = move_batch_to_device(batch, device)
loss_dict = model.allsplit_step('train', batch)
diff_loss = loss_dict['diff_loss']
cond_loss = loss_dict['cond_loss']
rot_loss = loss_dict['rot_loss']
loss = loss_dict['loss']
loss.backward()
torch.nn.utils.clip_grad_norm_(params, cfg.TRAIN.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad(set_to_none=True)
progress_bar.update(1)
global_step += 1
if global_step % cfg.TRAIN.checkpointing_steps == 0:
save_path = os.path.join(cfg.output_dir, 'checkpoints', f"checkpoint-{global_step}.ckpt")
ckpt = dict(state_dict=model.state_dict())
model.on_save_checkpoint(ckpt)
torch.save(ckpt, save_path)
logger.info(f"Saved state to {save_path}")
if global_step % cfg.TRAIN.validation_steps == 0:
cur_km, cur_tj = validation()
if cur_km < min_km:
min_km = cur_km
save_path = os.path.join(cfg.output_dir, 'checkpoints', f"checkpoint-{global_step}-km-{round(cur_km, 3)}.ckpt")
ckpt = dict(state_dict=model.state_dict())
model.on_save_checkpoint(ckpt)
torch.save(ckpt, save_path)
logger.info(f"Saved state to {save_path} with km:{round(cur_km, 3)}")
if cur_tj < min_tj:
min_tj = cur_tj
save_path = os.path.join(cfg.output_dir, 'checkpoints', f"checkpoint-{global_step}-tj-{round(cur_tj, 3)}.ckpt")
ckpt = dict(state_dict=model.state_dict())
model.on_save_checkpoint(ckpt)
torch.save(ckpt, save_path)
logger.info(f"Saved state to {save_path} with tj:{round(cur_tj, 3)}")
logs = {"loss": loss.item(), "lr": lr_scheduler.get_last_lr()[0],
"diff_loss": diff_loss.item(), 'cond_loss': cond_loss.item(), 'rot_loss': rot_loss.item()}
progress_bar.set_postfix(**logs)
for k, v in logs.items():
if cfg.vis == "tb":
writer.add_scalar(f"Train/{k}", v, global_step=global_step)
elif cfg.vis == "swanlab":
writer.log({f"Train/{k}": v}, step=global_step)
if global_step >= cfg.TRAIN.max_train_steps:
save_path = os.path.join(cfg.output_dir, 'checkpoints', f"checkpoint-last.ckpt")
ckpt = dict(state_dict=model.state_dict())
model.on_save_checkpoint(ckpt)
torch.save(ckpt, save_path)
exit(0)
if __name__ == "__main__":
main()
|