Spaces:
Runtime error
Runtime error
wuyangming
commited on
Commit
·
9693451
1
Parent(s):
afecc76
language_modeling_ipynb
Browse files- language_modeling_ipynb.ipynb +0 -0
- language_modeling_ipynb.py +254 -0
language_modeling_ipynb.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
language_modeling_ipynb.py
ADDED
@@ -0,0 +1,254 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""“language_modeling.ipynb”的副本
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1baqtirf_2hHx2-byvSi0iZo4g_5Rm_nZ
|
8 |
+
"""
|
9 |
+
|
10 |
+
# Transformers installation
|
11 |
+
! pip install transformers datasets
|
12 |
+
# To install from source instead of the last release, comment the command above and uncomment the following one.
|
13 |
+
# ! pip install git+https://github.com/huggingface/transformers.git
|
14 |
+
|
15 |
+
"""# Causal language modeling
|
16 |
+
|
17 |
+
There are two types of language modeling, causal and masked. This guide illustrates causal language modeling.
|
18 |
+
Causal language models are frequently used for text generation. You can use these models for creative applications like
|
19 |
+
choosing your own text adventure or an intelligent coding assistant like Copilot or CodeParrot.
|
20 |
+
"""
|
21 |
+
|
22 |
+
#@title
|
23 |
+
from IPython.display import HTML
|
24 |
+
|
25 |
+
HTML('<iframe width="560" height="315" src="https://www.youtube.com/embed/Vpjb1lu0MDk?rel=0&controls=0&showinfo=0" frameborder="0" allowfullscreen></iframe>')
|
26 |
+
|
27 |
+
"""Causal language modeling predicts the next token in a sequence of tokens, and the model can only attend to tokens on
|
28 |
+
the left. This means the model cannot see future tokens. GPT-2 is an example of a causal language model.
|
29 |
+
|
30 |
+
This guide will show you how to:
|
31 |
+
|
32 |
+
1. Finetune [DistilGPT2](https://huggingface.co/distilgpt2) on the [r/askscience](https://www.reddit.com/r/askscience/) subset of the [ELI5](https://huggingface.co/datasets/eli5) dataset.
|
33 |
+
2. Use your finetuned model for inference.
|
34 |
+
|
35 |
+
<Tip>
|
36 |
+
You can finetune other architectures for causal language modeling following the same steps in this guide.
|
37 |
+
Choose one of the following architectures:
|
38 |
+
|
39 |
+
<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->
|
40 |
+
[BART](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/bart), [BERT](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/bert), [Bert Generation](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/bert-generation), [BigBird](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/big_bird), [BigBird-Pegasus](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/bigbird_pegasus), [BioGpt](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/biogpt), [Blenderbot](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/blenderbot), [BlenderbotSmall](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/blenderbot-small), [BLOOM](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/bloom), [CamemBERT](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/camembert), [CodeGen](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/codegen), [CPM-Ant](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/cpmant), [CTRL](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/ctrl), [Data2VecText](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/data2vec-text), [ELECTRA](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/electra), [ERNIE](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/ernie), [GIT](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/git), [GPT-Sw3](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/gpt-sw3), [OpenAI GPT-2](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/gpt2), [GPTBigCode](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/gpt_bigcode), [GPT Neo](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/gpt_neo), [GPT NeoX](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/gpt_neox), [GPT NeoX Japanese](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/gpt_neox_japanese), [GPT-J](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/gptj), [LLaMA](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/llama), [Marian](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/marian), [mBART](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/mbart), [MEGA](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/mega), [Megatron-BERT](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/megatron-bert), [MVP](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/mvp), [OpenLlama](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/open-llama), [OpenAI GPT](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/openai-gpt), [OPT](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/opt), [Pegasus](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/pegasus), [PLBart](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/plbart), [ProphetNet](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/prophetnet), [QDQBert](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/qdqbert), [Reformer](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/reformer), [RemBERT](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/rembert), [RoBERTa](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/roberta), [RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/roberta-prelayernorm), [RoCBert](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/roc_bert), [RoFormer](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/roformer), [RWKV](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/rwkv), [Speech2Text2](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/speech_to_text_2), [Transformer-XL](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/transfo-xl), [TrOCR](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/trocr), [XGLM](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/xglm), [XLM](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/xlm), [XLM-ProphetNet](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/xlm-prophetnet), [XLM-RoBERTa](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/xlm-roberta), [XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/xlm-roberta-xl), [XLNet](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/xlnet), [X-MOD](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/xmod)
|
41 |
+
|
42 |
+
|
43 |
+
<!--End of the generated tip-->
|
44 |
+
|
45 |
+
</Tip>
|
46 |
+
|
47 |
+
Before you begin, make sure you have all the necessary libraries installed:
|
48 |
+
|
49 |
+
```bash
|
50 |
+
pip install transformers datasets evaluate
|
51 |
+
```
|
52 |
+
|
53 |
+
We encourage you to log in to your Hugging Face account so you can upload and share your model with the community. When prompted, enter your token to log in:
|
54 |
+
"""
|
55 |
+
|
56 |
+
from huggingface_hub import notebook_login
|
57 |
+
|
58 |
+
notebook_login()
|
59 |
+
|
60 |
+
"""## Load ELI5 dataset
|
61 |
+
|
62 |
+
Start by loading a smaller subset of the r/askscience subset of the ELI5 dataset from the 🤗 Datasets library.
|
63 |
+
This'll give you a chance to experiment and make sure everything works before spending more time training on the full dataset.
|
64 |
+
"""
|
65 |
+
|
66 |
+
from datasets import load_dataset
|
67 |
+
|
68 |
+
eli5 = load_dataset("eli5", split="train_asks[:5000]")
|
69 |
+
|
70 |
+
"""Split the dataset's `train_asks` split into a train and test set with the [train_test_split](https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Dataset.train_test_split) method:"""
|
71 |
+
|
72 |
+
eli5 = eli5.train_test_split(test_size=0.2)
|
73 |
+
|
74 |
+
"""Then take a look at an example:"""
|
75 |
+
|
76 |
+
eli5["train"][0]
|
77 |
+
|
78 |
+
"""While this may look like a lot, you're only really interested in the `text` field. What's cool about language modeling
|
79 |
+
tasks is you don't need labels (also known as an unsupervised task) because the next word *is* the label.
|
80 |
+
|
81 |
+
## Preprocess
|
82 |
+
"""
|
83 |
+
|
84 |
+
#@title
|
85 |
+
from IPython.display import HTML
|
86 |
+
|
87 |
+
HTML('<iframe width="560" height="315" src="https://www.youtube.com/embed/ma1TrR7gE7I?rel=0&controls=0&showinfo=0" frameborder="0" allowfullscreen></iframe>')
|
88 |
+
|
89 |
+
"""The next step is to load a DistilGPT2 tokenizer to process the `text` subfield:"""
|
90 |
+
|
91 |
+
from transformers import AutoTokenizer
|
92 |
+
|
93 |
+
tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
|
94 |
+
|
95 |
+
"""You'll notice from the example above, the `text` field is actually nested inside `answers`. This means you'll need to
|
96 |
+
extract the `text` subfield from its nested structure with the [`flatten`](https://huggingface.co/docs/datasets/process.html#flatten) method:
|
97 |
+
"""
|
98 |
+
|
99 |
+
eli5 = eli5.flatten()
|
100 |
+
eli5["train"][0]
|
101 |
+
|
102 |
+
"""Each subfield is now a separate column as indicated by the `answers` prefix, and the `text` field is a list now. Instead
|
103 |
+
of tokenizing each sentence separately, convert the list to a string so you can jointly tokenize them.
|
104 |
+
|
105 |
+
Here is a first preprocessing function to join the list of strings for each example and tokenize the result:
|
106 |
+
"""
|
107 |
+
|
108 |
+
def preprocess_function(examples):
|
109 |
+
return tokenizer([" ".join(x) for x in examples["answers.text"]])
|
110 |
+
|
111 |
+
"""To apply this preprocessing function over the entire dataset, use the 🤗 Datasets [map](https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Dataset.map) method. You can speed up the `map` function by setting `batched=True` to process multiple elements of the dataset at once, and increasing the number of processes with `num_proc`. Remove any columns you don't need:"""
|
112 |
+
|
113 |
+
tokenized_eli5 = eli5.map(
|
114 |
+
preprocess_function,
|
115 |
+
batched=True,
|
116 |
+
num_proc=4,
|
117 |
+
remove_columns=eli5["train"].column_names,
|
118 |
+
)
|
119 |
+
|
120 |
+
"""This dataset contains the token sequences, but some of these are longer than the maximum input length for the model.
|
121 |
+
|
122 |
+
You can now use a second preprocessing function to
|
123 |
+
- concatenate all the sequences
|
124 |
+
- split the concatenated sequences into shorter chunks defined by `block_size`, which should be both shorter than the maximum input length and short enough for your GPU RAM.
|
125 |
+
"""
|
126 |
+
|
127 |
+
block_size = 128
|
128 |
+
|
129 |
+
|
130 |
+
def group_texts(examples):
|
131 |
+
# Concatenate all texts.
|
132 |
+
concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
|
133 |
+
total_length = len(concatenated_examples[list(examples.keys())[0]])
|
134 |
+
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
|
135 |
+
# customize this part to your needs.
|
136 |
+
if total_length >= block_size:
|
137 |
+
total_length = (total_length // block_size) * block_size
|
138 |
+
# Split by chunks of block_size.
|
139 |
+
result = {
|
140 |
+
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
|
141 |
+
for k, t in concatenated_examples.items()
|
142 |
+
}
|
143 |
+
result["labels"] = result["input_ids"].copy()
|
144 |
+
return result
|
145 |
+
|
146 |
+
"""Apply the `group_texts` function over the entire dataset:"""
|
147 |
+
|
148 |
+
lm_dataset = tokenized_eli5.map(group_texts, batched=True, num_proc=4)
|
149 |
+
|
150 |
+
"""Now create a batch of examples using [DataCollatorForLanguageModeling](https://huggingface.co/docs/transformers/main/en/main_classes/data_collator#transformers.DataCollatorForLanguageModeling). It's more efficient to *dynamically pad* the
|
151 |
+
sentences to the longest length in a batch during collation, instead of padding the whole dataset to the maximum length.
|
152 |
+
|
153 |
+
Use the end-of-sequence token as the padding token and set `mlm=False`. This will use the inputs as labels shifted to the right by one element:
|
154 |
+
"""
|
155 |
+
|
156 |
+
from transformers import DataCollatorForLanguageModeling
|
157 |
+
|
158 |
+
tokenizer.pad_token = tokenizer.eos_token
|
159 |
+
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
160 |
+
|
161 |
+
"""## Train
|
162 |
+
|
163 |
+
<Tip>
|
164 |
+
|
165 |
+
If you aren't familiar with finetuning a model with the [Trainer](https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.Trainer), take a look at the [basic tutorial](https://huggingface.co/docs/transformers/main/en/tasks/../training#train-with-pytorch-trainer)!
|
166 |
+
|
167 |
+
</Tip>
|
168 |
+
|
169 |
+
You're ready to start training your model now! Load DistilGPT2 with [AutoModelForCausalLM](https://huggingface.co/docs/transformers/main/en/model_doc/auto#transformers.AutoModelForCausalLM):
|
170 |
+
"""
|
171 |
+
|
172 |
+
from transformers import AutoModelForCausalLM, TrainingArguments, Trainer
|
173 |
+
|
174 |
+
model = AutoModelForCausalLM.from_pretrained("distilgpt2")
|
175 |
+
|
176 |
+
"""At this point, only three steps remain:
|
177 |
+
|
178 |
+
1. Define your training hyperparameters in [TrainingArguments](https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.TrainingArguments). The only required parameter is `output_dir` which specifies where to save your model. You'll push this model to the Hub by setting `push_to_hub=True` (you need to be signed in to Hugging Face to upload your model).
|
179 |
+
2. Pass the training arguments to [Trainer](https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.Trainer) along with the model, datasets, and data collator.
|
180 |
+
3. Call [train()](https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.Trainer.train) to finetune your model.
|
181 |
+
"""
|
182 |
+
|
183 |
+
training_args = TrainingArguments(
|
184 |
+
output_dir="my_awesome_eli5_clm-model",
|
185 |
+
evaluation_strategy="epoch",
|
186 |
+
learning_rate=2e-5,
|
187 |
+
weight_decay=0.01,
|
188 |
+
push_to_hub=True,
|
189 |
+
)
|
190 |
+
|
191 |
+
trainer = Trainer(
|
192 |
+
model=model,
|
193 |
+
args=training_args,
|
194 |
+
train_dataset=lm_dataset["train"],
|
195 |
+
eval_dataset=lm_dataset["test"],
|
196 |
+
data_collator=data_collator,
|
197 |
+
)
|
198 |
+
|
199 |
+
trainer.train()
|
200 |
+
|
201 |
+
"""Once training is completed, use the [evaluate()](https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.Trainer.evaluate) method to evaluate your model and get its perplexity:"""
|
202 |
+
|
203 |
+
import math
|
204 |
+
|
205 |
+
eval_results = trainer.evaluate()
|
206 |
+
print(f"Perplexity: {math.exp(eval_results['eval_loss']):.2f}")
|
207 |
+
|
208 |
+
"""Then share your model to the Hub with the [push_to_hub()](https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.Trainer.push_to_hub) method so everyone can use your model:"""
|
209 |
+
|
210 |
+
trainer.push_to_hub()
|
211 |
+
|
212 |
+
"""<Tip>
|
213 |
+
|
214 |
+
For a more in-depth example of how to finetune a model for causal language modeling, take a look at the corresponding
|
215 |
+
[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb)
|
216 |
+
or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb).
|
217 |
+
|
218 |
+
</Tip>
|
219 |
+
|
220 |
+
## Inference
|
221 |
+
|
222 |
+
Great, now that you've finetuned a model, you can use it for inference!
|
223 |
+
|
224 |
+
Come up with a prompt you'd like to generate text from:
|
225 |
+
"""
|
226 |
+
|
227 |
+
prompt = "Somatic hypermutation allows the immune system to"
|
228 |
+
|
229 |
+
"""The simplest way to try out your finetuned model for inference is to use it in a [pipeline()](https://huggingface.co/docs/transformers/main/en/main_classes/pipelines#transformers.pipeline). Instantiate a `pipeline` for text generation with your model, and pass your text to it:"""
|
230 |
+
|
231 |
+
from transformers import pipeline
|
232 |
+
|
233 |
+
generator = pipeline("text-generation", model="my_awesome_eli5_clm-model")
|
234 |
+
generator(prompt)
|
235 |
+
|
236 |
+
"""Tokenize the text and return the `input_ids` as PyTorch tensors:"""
|
237 |
+
|
238 |
+
from transformers import AutoTokenizer
|
239 |
+
|
240 |
+
tokenizer = AutoTokenizer.from_pretrained("my_awesome_eli5_clm-model")
|
241 |
+
inputs = tokenizer(prompt, return_tensors="pt").input_ids
|
242 |
+
|
243 |
+
"""Use the [generate()](https://huggingface.co/docs/transformers/main/en/main_classes/text_generation#transformers.GenerationMixin.generate) method to generate text.
|
244 |
+
For more details about the different text generation strategies and parameters for controlling generation, check out the [Text generation strategies](https://huggingface.co/docs/transformers/main/en/tasks/../generation_strategies) page.
|
245 |
+
"""
|
246 |
+
|
247 |
+
from transformers import AutoModelForCausalLM
|
248 |
+
|
249 |
+
model = AutoModelForCausalLM.from_pretrained("my_awesome_eli5_clm-model")
|
250 |
+
outputs = model.generate(inputs, max_new_tokens=100, do_sample=True, top_k=50, top_p=0.95)
|
251 |
+
|
252 |
+
"""Decode the generated token ids back into text:"""
|
253 |
+
|
254 |
+
tokenizer.batch_decode(outputs, skip_special_tokens=True)
|