woshixuhao commited on
Commit
4ad5fdd
·
1 Parent(s): e12edad

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -3
app.py CHANGED
@@ -1393,6 +1393,16 @@ Given two compounds and predict the RT in different condition
1393
 
1394
 
1395
  def predict_separate(smile_1, smile_2, input_eluent, input_speed, input_column):
 
 
 
 
 
 
 
 
 
 
1396
  speed = []
1397
  eluent = []
1398
  smiles=[smile_1,smile_2]
@@ -1475,8 +1485,7 @@ def predict_separate(smile_1, smile_2, input_eluent, input_speed, input_column):
1475
  pred, h_graph = model(data_atom_bond.to(device), data_bond_angle.to(device))
1476
 
1477
  y_pred.append(pred.detach().cpu().data.numpy() / speed[i])
1478
- if input_speed==0:
1479
- out_put='Speed cannot be 0!'
1480
  else:
1481
  Sp=cal_prob(y_pred)
1482
  output_1=f'For smile_1,\n the predicted value is: {str(np.round(y_pred[0][0][1],3))}\n'
@@ -1487,6 +1496,15 @@ def predict_separate(smile_1, smile_2, input_eluent, input_speed, input_column):
1487
 
1488
 
1489
  def column_recommendation(smile_1, smile_2, input_eluent, input_speed):
 
 
 
 
 
 
 
 
 
1490
  speed = []
1491
  eluent = []
1492
  Prediction = []
@@ -1588,7 +1606,7 @@ def column_recommendation(smile_1, smile_2, input_eluent, input_speed):
1588
 
1589
 
1590
  if __name__=='__main__':
1591
- model_card = f"""
1592
  ## Description\n
1593
  It is a app for predicting retention times in HPLC and recommend the best HPLC column type for chromatographic enantioseparation.\n\n
1594
  Input:\n
 
1393
 
1394
 
1395
  def predict_separate(smile_1, smile_2, input_eluent, input_speed, input_column):
1396
+ if input_speed==None:
1397
+ out_put='Please input Speed!'
1398
+ return out_put
1399
+ if input_speed==0:
1400
+ out_put='Speed cannot be 0!'
1401
+ return out_put
1402
+ if input_eluent==None:
1403
+ out_put='Please input eluent!'
1404
+ return out_put
1405
+
1406
  speed = []
1407
  eluent = []
1408
  smiles=[smile_1,smile_2]
 
1485
  pred, h_graph = model(data_atom_bond.to(device), data_bond_angle.to(device))
1486
 
1487
  y_pred.append(pred.detach().cpu().data.numpy() / speed[i])
1488
+
 
1489
  else:
1490
  Sp=cal_prob(y_pred)
1491
  output_1=f'For smile_1,\n the predicted value is: {str(np.round(y_pred[0][0][1],3))}\n'
 
1496
 
1497
 
1498
  def column_recommendation(smile_1, smile_2, input_eluent, input_speed):
1499
+ if input_speed==None:
1500
+ out_put='Please input Speed!'
1501
+ return out_put
1502
+ if input_speed==0:
1503
+ out_put='Speed cannot be 0!'
1504
+ return out_put
1505
+ if input_eluent==None:
1506
+ out_put='Please input eluent!'
1507
+ return out_put
1508
  speed = []
1509
  eluent = []
1510
  Prediction = []
 
1606
 
1607
 
1608
  if __name__=='__main__':
1609
+ model_card = f"""
1610
  ## Description\n
1611
  It is a app for predicting retention times in HPLC and recommend the best HPLC column type for chromatographic enantioseparation.\n\n
1612
  Input:\n