woshixuhao's picture
Update app.py
f3c3e5a verified
raw
history blame
71.2 kB
import torch
from torch_geometric.nn import MessagePassing
from rdkit.Chem import Descriptors
from torch_geometric.data import Data
import argparse
import warnings
from rdkit.Chem.Descriptors import rdMolDescriptors
import pandas as pd
import os
from mordred import Calculator, descriptors, is_missing
from torch_geometric.nn import global_add_pool, global_mean_pool, global_max_pool, GlobalAttention, Set2Set
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from rdkit import Chem
from rdkit.Chem import AllChem
from rdkit.Chem import rdchem
import gradio as gr
DAY_LIGHT_FG_SMARTS_LIST = [
# C
"[CX4]",
"[$([CX2](=C)=C)]",
"[$([CX3]=[CX3])]",
"[$([CX2]#C)]",
# C & O
"[CX3]=[OX1]",
"[$([CX3]=[OX1]),$([CX3+]-[OX1-])]",
"[CX3](=[OX1])C",
"[OX1]=CN",
"[CX3](=[OX1])O",
"[CX3](=[OX1])[F,Cl,Br,I]",
"[CX3H1](=O)[#6]",
"[CX3](=[OX1])[OX2][CX3](=[OX1])",
"[NX3][CX3](=[OX1])[#6]",
"[NX3][CX3]=[NX3+]",
"[NX3,NX4+][CX3](=[OX1])[OX2,OX1-]",
"[NX3][CX3](=[OX1])[OX2H0]",
"[NX3,NX4+][CX3](=[OX1])[OX2H,OX1-]",
"[CX3](=O)[O-]",
"[CX3](=[OX1])(O)O",
"[CX3](=[OX1])([OX2])[OX2H,OX1H0-1]",
"C[OX2][CX3](=[OX1])[OX2]C",
"[CX3](=O)[OX2H1]",
"[CX3](=O)[OX1H0-,OX2H1]",
"[NX3][CX2]#[NX1]",
"[#6][CX3](=O)[OX2H0][#6]",
"[#6][CX3](=O)[#6]",
"[OD2]([#6])[#6]",
# H
"[H]",
"[!#1]",
"[H+]",
"[+H]",
"[!H]",
# N
"[NX3;H2,H1;!$(NC=O)]",
"[NX3][CX3]=[CX3]",
"[NX3;H2;!$(NC=[!#6]);!$(NC#[!#6])][#6]",
"[NX3;H2,H1;!$(NC=O)].[NX3;H2,H1;!$(NC=O)]",
"[NX3][$(C=C),$(cc)]",
"[NX3,NX4+][CX4H]([*])[CX3](=[OX1])[O,N]",
"[NX3H2,NH3X4+][CX4H]([*])[CX3](=[OX1])[NX3,NX4+][CX4H]([*])[CX3](=[OX1])[OX2H,OX1-]",
"[$([NX3H2,NX4H3+]),$([NX3H](C)(C))][CX4H]([*])[CX3](=[OX1])[OX2H,OX1-,N]",
"[CH3X4]",
"[CH2X4][CH2X4][CH2X4][NHX3][CH0X3](=[NH2X3+,NHX2+0])[NH2X3]",
"[CH2X4][CX3](=[OX1])[NX3H2]",
"[CH2X4][CX3](=[OX1])[OH0-,OH]",
"[CH2X4][SX2H,SX1H0-]",
"[CH2X4][CH2X4][CX3](=[OX1])[OH0-,OH]",
"[$([$([NX3H2,NX4H3+]),$([NX3H](C)(C))][CX4H2][CX3](=[OX1])[OX2H,OX1-,N])]",
"[CH2X4][#6X3]1:[$([#7X3H+,#7X2H0+0]:[#6X3H]:[#7X3H]),$([#7X3H])]:[#6X3H]:\
[$([#7X3H+,#7X2H0+0]:[#6X3H]:[#7X3H]),$([#7X3H])]:[#6X3H]1",
"[CHX4]([CH3X4])[CH2X4][CH3X4]",
"[CH2X4][CHX4]([CH3X4])[CH3X4]",
"[CH2X4][CH2X4][CH2X4][CH2X4][NX4+,NX3+0]",
"[CH2X4][CH2X4][SX2][CH3X4]",
"[CH2X4][cX3]1[cX3H][cX3H][cX3H][cX3H][cX3H]1",
"[$([NX3H,NX4H2+]),$([NX3](C)(C)(C))]1[CX4H]([CH2][CH2][CH2]1)[CX3](=[OX1])[OX2H,OX1-,N]",
"[CH2X4][OX2H]",
"[NX3][CX3]=[SX1]",
"[CHX4]([CH3X4])[OX2H]",
"[CH2X4][cX3]1[cX3H][nX3H][cX3]2[cX3H][cX3H][cX3H][cX3H][cX3]12",
"[CH2X4][cX3]1[cX3H][cX3H][cX3]([OHX2,OH0X1-])[cX3H][cX3H]1",
"[CHX4]([CH3X4])[CH3X4]",
"N[CX4H2][CX3](=[OX1])[O,N]",
"N1[CX4H]([CH2][CH2][CH2]1)[CX3](=[OX1])[O,N]",
"[$(*-[NX2-]-[NX2+]#[NX1]),$(*-[NX2]=[NX2+]=[NX1-])]",
"[$([NX1-]=[NX2+]=[NX1-]),$([NX1]#[NX2+]-[NX1-2])]",
"[#7]",
"[NX2]=N",
"[NX2]=[NX2]",
"[$([NX2]=[NX3+]([O-])[#6]),$([NX2]=[NX3+0](=[O])[#6])]",
"[$([#6]=[N+]=[N-]),$([#6-]-[N+]#[N])]",
"[$([nr5]:[nr5,or5,sr5]),$([nr5]:[cr5]:[nr5,or5,sr5])]",
"[NX3][NX3]",
"[NX3][NX2]=[*]",
"[CX3;$([C]([#6])[#6]),$([CH][#6])]=[NX2][#6]",
"[$([CX3]([#6])[#6]),$([CX3H][#6])]=[$([NX2][#6]),$([NX2H])]",
"[NX3+]=[CX3]",
"[CX3](=[OX1])[NX3H][CX3](=[OX1])",
"[CX3](=[OX1])[NX3H0]([#6])[CX3](=[OX1])",
"[CX3](=[OX1])[NX3H0]([NX3H0]([CX3](=[OX1]))[CX3](=[OX1]))[CX3](=[OX1])",
"[$([NX3](=[OX1])(=[OX1])O),$([NX3+]([OX1-])(=[OX1])O)]",
"[$([OX1]=[NX3](=[OX1])[OX1-]),$([OX1]=[NX3+]([OX1-])[OX1-])]",
"[NX1]#[CX2]",
"[CX1-]#[NX2+]",
"[$([NX3](=O)=O),$([NX3+](=O)[O-])][!#8]",
"[$([NX3](=O)=O),$([NX3+](=O)[O-])][!#8].[$([NX3](=O)=O),$([NX3+](=O)[O-])][!#8]",
"[NX2]=[OX1]",
"[$([#7+][OX1-]),$([#7v5]=[OX1]);!$([#7](~[O])~[O]);!$([#7]=[#7])]",
# O
"[OX2H]",
"[#6][OX2H]",
"[OX2H][CX3]=[OX1]",
"[OX2H]P",
"[OX2H][#6X3]=[#6]",
"[OX2H][cX3]:[c]",
"[OX2H][$(C=C),$(cc)]",
"[$([OH]-*=[!#6])]",
"[OX2,OX1-][OX2,OX1-]",
# P
"[$(P(=[OX1])([$([OX2H]),$([OX1-]),$([OX2]P)])([$([OX2H]),$([OX1-]),\
$([OX2]P)])[$([OX2H]),$([OX1-]),$([OX2]P)]),$([P+]([OX1-])([$([OX2H]),$([OX1-])\
,$([OX2]P)])([$([OX2H]),$([OX1-]),$([OX2]P)])[$([OX2H]),$([OX1-]),$([OX2]P)])]",
"[$(P(=[OX1])([OX2][#6])([$([OX2H]),$([OX1-]),$([OX2][#6])])[$([OX2H]),\
$([OX1-]),$([OX2][#6]),$([OX2]P)]),$([P+]([OX1-])([OX2][#6])([$([OX2H]),$([OX1-]),\
$([OX2][#6])])[$([OX2H]),$([OX1-]),$([OX2][#6]),$([OX2]P)])]",
# S
"[S-][CX3](=S)[#6]",
"[#6X3](=[SX1])([!N])[!N]",
"[SX2]",
"[#16X2H]",
"[#16!H0]",
"[#16X2H0]",
"[#16X2H0][!#16]",
"[#16X2H0][#16X2H0]",
"[#16X2H0][!#16].[#16X2H0][!#16]",
"[$([#16X3](=[OX1])[OX2H0]),$([#16X3+]([OX1-])[OX2H0])]",
"[$([#16X3](=[OX1])[OX2H,OX1H0-]),$([#16X3+]([OX1-])[OX2H,OX1H0-])]",
"[$([#16X4](=[OX1])=[OX1]),$([#16X4+2]([OX1-])[OX1-])]",
"[$([#16X4](=[OX1])(=[OX1])([#6])[#6]),$([#16X4+2]([OX1-])([OX1-])([#6])[#6])]",
"[$([#16X4](=[OX1])(=[OX1])([#6])[OX2H,OX1H0-]),$([#16X4+2]([OX1-])([OX1-])([#6])[OX2H,OX1H0-])]",
"[$([#16X4](=[OX1])(=[OX1])([#6])[OX2H0]),$([#16X4+2]([OX1-])([OX1-])([#6])[OX2H0])]",
"[$([#16X4]([NX3])(=[OX1])(=[OX1])[#6]),$([#16X4+2]([NX3])([OX1-])([OX1-])[#6])]",
"[SX4](C)(C)(=O)=N",
"[$([SX4](=[OX1])(=[OX1])([!O])[NX3]),$([SX4+2]([OX1-])([OX1-])([!O])[NX3])]",
"[$([#16X3]=[OX1]),$([#16X3+][OX1-])]",
"[$([#16X3](=[OX1])([#6])[#6]),$([#16X3+]([OX1-])([#6])[#6])]",
"[$([#16X4](=[OX1])(=[OX1])([OX2H,OX1H0-])[OX2][#6]),$([#16X4+2]([OX1-])([OX1-])([OX2H,OX1H0-])[OX2][#6])]",
"[$([SX4](=O)(=O)(O)O),$([SX4+2]([O-])([O-])(O)O)]",
"[$([#16X4](=[OX1])(=[OX1])([OX2][#6])[OX2][#6]),$([#16X4](=[OX1])(=[OX1])([OX2][#6])[OX2][#6])]",
"[$([#16X4]([NX3])(=[OX1])(=[OX1])[OX2][#6]),$([#16X4+2]([NX3])([OX1-])([OX1-])[OX2][#6])]",
"[$([#16X4]([NX3])(=[OX1])(=[OX1])[OX2H,OX1H0-]),$([#16X4+2]([NX3])([OX1-])([OX1-])[OX2H,OX1H0-])]",
"[#16X2][OX2H,OX1H0-]",
"[#16X2][OX2H0]",
# X
"[#6][F,Cl,Br,I]",
"[F,Cl,Br,I]",
"[F,Cl,Br,I].[F,Cl,Br,I].[F,Cl,Br,I]",
]
def get_gasteiger_partial_charges(mol, n_iter=12):
"""
Calculates list of gasteiger partial charges for each atom in mol object.
Args:
mol: rdkit mol object.
n_iter(int): number of iterations. Default 12.
Returns:
list of computed partial charges for each atom.
"""
Chem.rdPartialCharges.ComputeGasteigerCharges(mol, nIter=n_iter,
throwOnParamFailure=True)
partial_charges = [float(a.GetProp('_GasteigerCharge')) for a in
mol.GetAtoms()]
return partial_charges
def create_standardized_mol_id(smiles):
"""
Args:
smiles: smiles sequence.
Returns:
inchi.
"""
if check_smiles_validity(smiles):
# remove stereochemistry
smiles = AllChem.MolToSmiles(AllChem.MolFromSmiles(smiles),
isomericSmiles=False)
mol = AllChem.MolFromSmiles(smiles)
if not mol is None: # to catch weird issue with O=C1O[al]2oc(=O)c3ccc(cn3)c3ccccc3c3cccc(c3)c3ccccc3c3cc(C(F)(F)F)c(cc3o2)-c2ccccc2-c2cccc(c2)-c2ccccc2-c2cccnc21
if '.' in smiles: # if multiple species, pick largest molecule
mol_species_list = split_rdkit_mol_obj(mol)
largest_mol = get_largest_mol(mol_species_list)
inchi = AllChem.MolToInchi(largest_mol)
else:
inchi = AllChem.MolToInchi(mol)
return inchi
else:
return
else:
return
def check_smiles_validity(smiles):
"""
Check whether the smile can't be converted to rdkit mol object.
"""
try:
m = Chem.MolFromSmiles(smiles)
if m:
return True
else:
return False
except Exception as e:
return False
def split_rdkit_mol_obj(mol):
"""
Split rdkit mol object containing multiple species or one species into a
list of mol objects or a list containing a single object respectively.
Args:
mol: rdkit mol object.
"""
smiles = AllChem.MolToSmiles(mol, isomericSmiles=True)
smiles_list = smiles.split('.')
mol_species_list = []
for s in smiles_list:
if check_smiles_validity(s):
mol_species_list.append(AllChem.MolFromSmiles(s))
return mol_species_list
def get_largest_mol(mol_list):
"""
Given a list of rdkit mol objects, returns mol object containing the
largest num of atoms. If multiple containing largest num of atoms,
picks the first one.
Args:
mol_list(list): a list of rdkit mol object.
Returns:
the largest mol.
"""
num_atoms_list = [len(m.GetAtoms()) for m in mol_list]
largest_mol_idx = num_atoms_list.index(max(num_atoms_list))
return mol_list[largest_mol_idx]
def rdchem_enum_to_list(values):
"""values = {0: rdkit.Chem.rdchem.ChiralType.CHI_UNSPECIFIED,
1: rdkit.Chem.rdchem.ChiralType.CHI_TETRAHEDRAL_CW,
2: rdkit.Chem.rdchem.ChiralType.CHI_TETRAHEDRAL_CCW,
3: rdkit.Chem.rdchem.ChiralType.CHI_OTHER}
"""
return [values[i] for i in range(len(values))]
def safe_index(alist, elem):
"""
Return index of element e in list l. If e is not present, return the last index
"""
try:
return alist.index(elem)
except ValueError:
return len(alist) - 1
def get_atom_feature_dims(list_acquired_feature_names):
""" tbd
"""
return list(map(len, [CompoundKit.atom_vocab_dict[name] for name in list_acquired_feature_names]))
def get_bond_feature_dims(list_acquired_feature_names):
""" tbd
"""
list_bond_feat_dim = list(map(len, [CompoundKit.bond_vocab_dict[name] for name in list_acquired_feature_names]))
# +1 for self loop edges
return [_l + 1 for _l in list_bond_feat_dim]
class CompoundKit(object):
"""
CompoundKit
"""
atom_vocab_dict = {
"atomic_num": list(range(1, 119)) + ['misc'],
"chiral_tag": rdchem_enum_to_list(rdchem.ChiralType.values),
"degree": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 'misc'],
"explicit_valence": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 'misc'],
"formal_charge": [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 'misc'],
"hybridization": rdchem_enum_to_list(rdchem.HybridizationType.values),
"implicit_valence": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 'misc'],
"is_aromatic": [0, 1],
"total_numHs": [0, 1, 2, 3, 4, 5, 6, 7, 8, 'misc'],
'num_radical_e': [0, 1, 2, 3, 4, 'misc'],
'atom_is_in_ring': [0, 1],
'valence_out_shell': [0, 1, 2, 3, 4, 5, 6, 7, 8, 'misc'],
'in_num_ring_with_size3': [0, 1, 2, 3, 4, 5, 6, 7, 8, 'misc'],
'in_num_ring_with_size4': [0, 1, 2, 3, 4, 5, 6, 7, 8, 'misc'],
'in_num_ring_with_size5': [0, 1, 2, 3, 4, 5, 6, 7, 8, 'misc'],
'in_num_ring_with_size6': [0, 1, 2, 3, 4, 5, 6, 7, 8, 'misc'],
'in_num_ring_with_size7': [0, 1, 2, 3, 4, 5, 6, 7, 8, 'misc'],
'in_num_ring_with_size8': [0, 1, 2, 3, 4, 5, 6, 7, 8, 'misc'],
}
bond_vocab_dict = {
"bond_dir": rdchem_enum_to_list(rdchem.BondDir.values),
"bond_type": rdchem_enum_to_list(rdchem.BondType.values),
"is_in_ring": [0, 1],
'bond_stereo': rdchem_enum_to_list(rdchem.BondStereo.values),
'is_conjugated': [0, 1],
}
# float features
atom_float_names = ["van_der_waals_radis", "partial_charge", 'mass']
# bond_float_feats= ["bond_length", "bond_angle"] # optional
### functional groups
day_light_fg_smarts_list = DAY_LIGHT_FG_SMARTS_LIST
day_light_fg_mo_list = [Chem.MolFromSmarts(smarts) for smarts in day_light_fg_smarts_list]
morgan_fp_N = 200
morgan2048_fp_N = 2048
maccs_fp_N = 167
period_table = Chem.GetPeriodicTable()
### atom
@staticmethod
def get_atom_value(atom, name):
"""get atom values"""
if name == 'atomic_num':
return atom.GetAtomicNum()
elif name == 'chiral_tag':
return atom.GetChiralTag()
elif name == 'degree':
return atom.GetDegree()
elif name == 'explicit_valence':
return atom.GetExplicitValence()
elif name == 'formal_charge':
return atom.GetFormalCharge()
elif name == 'hybridization':
return atom.GetHybridization()
elif name == 'implicit_valence':
return atom.GetImplicitValence()
elif name == 'is_aromatic':
return int(atom.GetIsAromatic())
elif name == 'mass':
return int(atom.GetMass())
elif name == 'total_numHs':
return atom.GetTotalNumHs()
elif name == 'num_radical_e':
return atom.GetNumRadicalElectrons()
elif name == 'atom_is_in_ring':
return int(atom.IsInRing())
elif name == 'valence_out_shell':
return CompoundKit.period_table.GetNOuterElecs(atom.GetAtomicNum())
else:
raise ValueError(name)
@staticmethod
def get_atom_feature_id(atom, name):
"""get atom features id"""
assert name in CompoundKit.atom_vocab_dict, "%s not found in atom_vocab_dict" % name
return safe_index(CompoundKit.atom_vocab_dict[name], CompoundKit.get_atom_value(atom, name))
@staticmethod
def get_atom_feature_size(name):
"""get atom features size"""
assert name in CompoundKit.atom_vocab_dict, "%s not found in atom_vocab_dict" % name
return len(CompoundKit.atom_vocab_dict[name])
### bond
@staticmethod
def get_bond_value(bond, name):
"""get bond values"""
if name == 'bond_dir':
return bond.GetBondDir()
elif name == 'bond_type':
return bond.GetBondType()
elif name == 'is_in_ring':
return int(bond.IsInRing())
elif name == 'is_conjugated':
return int(bond.GetIsConjugated())
elif name == 'bond_stereo':
return bond.GetStereo()
else:
raise ValueError(name)
@staticmethod
def get_bond_feature_id(bond, name):
"""get bond features id"""
assert name in CompoundKit.bond_vocab_dict, "%s not found in bond_vocab_dict" % name
return safe_index(CompoundKit.bond_vocab_dict[name], CompoundKit.get_bond_value(bond, name))
@staticmethod
def get_bond_feature_size(name):
"""get bond features size"""
assert name in CompoundKit.bond_vocab_dict, "%s not found in bond_vocab_dict" % name
return len(CompoundKit.bond_vocab_dict[name])
### fingerprint
@staticmethod
def get_morgan_fingerprint(mol, radius=2):
"""get morgan fingerprint"""
nBits = CompoundKit.morgan_fp_N
mfp = AllChem.GetMorganFingerprintAsBitVect(mol, radius, nBits=nBits)
return [int(b) for b in mfp.ToBitString()]
@staticmethod
def get_morgan2048_fingerprint(mol, radius=2):
"""get morgan2048 fingerprint"""
nBits = CompoundKit.morgan2048_fp_N
mfp = AllChem.GetMorganFingerprintAsBitVect(mol, radius, nBits=nBits)
return [int(b) for b in mfp.ToBitString()]
@staticmethod
def get_maccs_fingerprint(mol):
"""get maccs fingerprint"""
fp = AllChem.GetMACCSKeysFingerprint(mol)
return [int(b) for b in fp.ToBitString()]
### functional groups
@staticmethod
def get_daylight_functional_group_counts(mol):
"""get daylight functional group counts"""
fg_counts = []
for fg_mol in CompoundKit.day_light_fg_mo_list:
sub_structs = Chem.Mol.GetSubstructMatches(mol, fg_mol, uniquify=True)
fg_counts.append(len(sub_structs))
return fg_counts
@staticmethod
def get_ring_size(mol):
"""return (N,6) list"""
rings = mol.GetRingInfo()
rings_info = []
for r in rings.AtomRings():
rings_info.append(r)
ring_list = []
for atom in mol.GetAtoms():
atom_result = []
for ringsize in range(3, 9):
num_of_ring_at_ringsize = 0
for r in rings_info:
if len(r) == ringsize and atom.GetIdx() in r:
num_of_ring_at_ringsize += 1
if num_of_ring_at_ringsize > 8:
num_of_ring_at_ringsize = 9
atom_result.append(num_of_ring_at_ringsize)
ring_list.append(atom_result)
return ring_list
@staticmethod
def atom_to_feat_vector(atom):
""" tbd """
atom_names = {
"atomic_num": safe_index(CompoundKit.atom_vocab_dict["atomic_num"], atom.GetAtomicNum()),
"chiral_tag": safe_index(CompoundKit.atom_vocab_dict["chiral_tag"], atom.GetChiralTag()),
"degree": safe_index(CompoundKit.atom_vocab_dict["degree"], atom.GetTotalDegree()),
"explicit_valence": safe_index(CompoundKit.atom_vocab_dict["explicit_valence"], atom.GetExplicitValence()),
"formal_charge": safe_index(CompoundKit.atom_vocab_dict["formal_charge"], atom.GetFormalCharge()),
"hybridization": safe_index(CompoundKit.atom_vocab_dict["hybridization"], atom.GetHybridization()),
"implicit_valence": safe_index(CompoundKit.atom_vocab_dict["implicit_valence"], atom.GetImplicitValence()),
"is_aromatic": safe_index(CompoundKit.atom_vocab_dict["is_aromatic"], int(atom.GetIsAromatic())),
"total_numHs": safe_index(CompoundKit.atom_vocab_dict["total_numHs"], atom.GetTotalNumHs()),
'num_radical_e': safe_index(CompoundKit.atom_vocab_dict['num_radical_e'], atom.GetNumRadicalElectrons()),
'atom_is_in_ring': safe_index(CompoundKit.atom_vocab_dict['atom_is_in_ring'], int(atom.IsInRing())),
'valence_out_shell': safe_index(CompoundKit.atom_vocab_dict['valence_out_shell'],
CompoundKit.period_table.GetNOuterElecs(atom.GetAtomicNum())),
'van_der_waals_radis': CompoundKit.period_table.GetRvdw(atom.GetAtomicNum()),
'partial_charge': CompoundKit.check_partial_charge(atom),
'mass': atom.GetMass(),
}
return atom_names
@staticmethod
def get_atom_names(mol):
"""get atom name list
TODO: to be remove in the future
"""
atom_features_dicts = []
Chem.rdPartialCharges.ComputeGasteigerCharges(mol)
for i, atom in enumerate(mol.GetAtoms()):
atom_features_dicts.append(CompoundKit.atom_to_feat_vector(atom))
ring_list = CompoundKit.get_ring_size(mol)
for i, atom in enumerate(mol.GetAtoms()):
atom_features_dicts[i]['in_num_ring_with_size3'] = safe_index(
CompoundKit.atom_vocab_dict['in_num_ring_with_size3'], ring_list[i][0])
atom_features_dicts[i]['in_num_ring_with_size4'] = safe_index(
CompoundKit.atom_vocab_dict['in_num_ring_with_size4'], ring_list[i][1])
atom_features_dicts[i]['in_num_ring_with_size5'] = safe_index(
CompoundKit.atom_vocab_dict['in_num_ring_with_size5'], ring_list[i][2])
atom_features_dicts[i]['in_num_ring_with_size6'] = safe_index(
CompoundKit.atom_vocab_dict['in_num_ring_with_size6'], ring_list[i][3])
atom_features_dicts[i]['in_num_ring_with_size7'] = safe_index(
CompoundKit.atom_vocab_dict['in_num_ring_with_size7'], ring_list[i][4])
atom_features_dicts[i]['in_num_ring_with_size8'] = safe_index(
CompoundKit.atom_vocab_dict['in_num_ring_with_size8'], ring_list[i][5])
return atom_features_dicts
@staticmethod
def check_partial_charge(atom):
"""tbd"""
pc = atom.GetDoubleProp('_GasteigerCharge')
if pc != pc:
# unsupported atom, replace nan with 0
pc = 0
if pc == float('inf'):
# max 4 for other atoms, set to 10 here if inf is get
pc = 10
return pc
class Compound3DKit(object):
"""the 3Dkit of Compound"""
@staticmethod
def get_atom_poses(mol, conf):
"""tbd"""
atom_poses = []
for i, atom in enumerate(mol.GetAtoms()):
if atom.GetAtomicNum() == 0:
return [[0.0, 0.0, 0.0]] * len(mol.GetAtoms())
pos = conf.GetAtomPosition(i)
atom_poses.append([pos.x, pos.y, pos.z])
return atom_poses
@staticmethod
def get_MMFF_atom_poses(mol, numConfs=None, return_energy=False):
"""the atoms of mol will be changed in some cases."""
conf = mol.GetConformer()
atom_poses = Compound3DKit.get_atom_poses(mol, conf)
return mol,atom_poses
# try:
# new_mol = Chem.AddHs(mol)
# res = AllChem.EmbedMultipleConfs(new_mol, numConfs=numConfs)
# ### MMFF generates multiple conformations
# res = AllChem.MMFFOptimizeMoleculeConfs(new_mol)
# new_mol = Chem.RemoveHs(new_mol)
# index = np.argmin([x[1] for x in res])
# energy = res[index][1]
# conf = new_mol.GetConformer(id=int(index))
# except:
# new_mol = mol
# AllChem.Compute2DCoords(new_mol)
# energy = 0
# conf = new_mol.GetConformer()
#
# atom_poses = Compound3DKit.get_atom_poses(new_mol, conf)
# if return_energy:
# return new_mol, atom_poses, energy
# else:
# return new_mol, atom_poses
@staticmethod
def get_2d_atom_poses(mol):
"""get 2d atom poses"""
AllChem.Compute2DCoords(mol)
conf = mol.GetConformer()
atom_poses = Compound3DKit.get_atom_poses(mol, conf)
return atom_poses
@staticmethod
def get_bond_lengths(edges, atom_poses):
"""get bond lengths"""
bond_lengths = []
for src_node_i, tar_node_j in edges:
bond_lengths.append(np.linalg.norm(atom_poses[tar_node_j] - atom_poses[src_node_i]))
bond_lengths = np.array(bond_lengths, 'float32')
return bond_lengths
@staticmethod
def get_superedge_angles(edges, atom_poses, dir_type='HT'):
"""get superedge angles"""
def _get_vec(atom_poses, edge):
return atom_poses[edge[1]] - atom_poses[edge[0]]
def _get_angle(vec1, vec2):
norm1 = np.linalg.norm(vec1)
norm2 = np.linalg.norm(vec2)
if norm1 == 0 or norm2 == 0:
return 0
vec1 = vec1 / (norm1 + 1e-5) # 1e-5: prevent numerical errors
vec2 = vec2 / (norm2 + 1e-5)
angle = np.arccos(np.dot(vec1, vec2))
return angle
E = len(edges)
edge_indices = np.arange(E)
super_edges = []
bond_angles = []
bond_angle_dirs = []
for tar_edge_i in range(E):
tar_edge = edges[tar_edge_i]
if dir_type == 'HT':
src_edge_indices = edge_indices[edges[:, 1] == tar_edge[0]]
elif dir_type == 'HH':
src_edge_indices = edge_indices[edges[:, 1] == tar_edge[1]]
else:
raise ValueError(dir_type)
for src_edge_i in src_edge_indices:
if src_edge_i == tar_edge_i:
continue
src_edge = edges[src_edge_i]
src_vec = _get_vec(atom_poses, src_edge)
tar_vec = _get_vec(atom_poses, tar_edge)
super_edges.append([src_edge_i, tar_edge_i])
angle = _get_angle(src_vec, tar_vec)
bond_angles.append(angle)
bond_angle_dirs.append(src_edge[1] == tar_edge[0]) # H -> H or H -> T
if len(super_edges) == 0:
super_edges = np.zeros([0, 2], 'int64')
bond_angles = np.zeros([0, ], 'float32')
else:
super_edges = np.array(super_edges, 'int64')
bond_angles = np.array(bond_angles, 'float32')
return super_edges, bond_angles, bond_angle_dirs
def new_smiles_to_graph_data(smiles, **kwargs):
"""
Convert smiles to graph data.
"""
mol = AllChem.MolFromSmiles(smiles)
if mol is None:
return None
data = new_mol_to_graph_data(mol)
return data
def new_mol_to_graph_data(mol):
"""
mol_to_graph_data
Args:
atom_features: Atom features.
edge_features: Edge features.
morgan_fingerprint: Morgan fingerprint.
functional_groups: Functional groups.
"""
if len(mol.GetAtoms()) == 0:
return None
atom_id_names = list(CompoundKit.atom_vocab_dict.keys()) + CompoundKit.atom_float_names
bond_id_names = list(CompoundKit.bond_vocab_dict.keys())
data = {}
### atom features
data = {name: [] for name in atom_id_names}
raw_atom_feat_dicts = CompoundKit.get_atom_names(mol)
for atom_feat in raw_atom_feat_dicts:
for name in atom_id_names:
data[name].append(atom_feat[name])
### bond and bond features
for name in bond_id_names:
data[name] = []
data['edges'] = []
for bond in mol.GetBonds():
i = bond.GetBeginAtomIdx()
j = bond.GetEndAtomIdx()
# i->j and j->i
data['edges'] += [(i, j), (j, i)]
for name in bond_id_names:
bond_feature_id = CompoundKit.get_bond_feature_id(bond, name)
data[name] += [bond_feature_id] * 2
#### self loop
N = len(data[atom_id_names[0]])
for i in range(N):
data['edges'] += [(i, i)]
for name in bond_id_names:
bond_feature_id = get_bond_feature_dims([name])[0] - 1 # self loop: value = len - 1
data[name] += [bond_feature_id] * N
### make ndarray and check length
for name in list(CompoundKit.atom_vocab_dict.keys()):
data[name] = np.array(data[name], 'int64')
for name in CompoundKit.atom_float_names:
data[name] = np.array(data[name], 'float32')
for name in bond_id_names:
data[name] = np.array(data[name], 'int64')
data['edges'] = np.array(data['edges'], 'int64')
### morgan fingerprint
data['morgan_fp'] = np.array(CompoundKit.get_morgan_fingerprint(mol), 'int64')
# data['morgan2048_fp'] = np.array(CompoundKit.get_morgan2048_fingerprint(mol), 'int64')
data['maccs_fp'] = np.array(CompoundKit.get_maccs_fingerprint(mol), 'int64')
data['daylight_fg_counts'] = np.array(CompoundKit.get_daylight_functional_group_counts(mol), 'int64')
return data
def mol_to_graph_data(mol):
"""
mol_to_graph_data
Args:
atom_features: Atom features.
edge_features: Edge features.
morgan_fingerprint: Morgan fingerprint.
functional_groups: Functional groups.
"""
if len(mol.GetAtoms()) == 0:
return None
atom_id_names = [
"atomic_num", "chiral_tag", "degree", "explicit_valence",
"formal_charge", "hybridization", "implicit_valence",
"is_aromatic", "total_numHs",
]
bond_id_names = [
"bond_dir", "bond_type", "is_in_ring",
]
data = {}
for name in atom_id_names:
data[name] = []
data['mass'] = []
for name in bond_id_names:
data[name] = []
data['edges'] = []
### atom features
for i, atom in enumerate(mol.GetAtoms()):
if atom.GetAtomicNum() == 0:
return None
for name in atom_id_names:
data[name].append(CompoundKit.get_atom_feature_id(atom, name) + 1) # 0: OOV
data['mass'].append(CompoundKit.get_atom_value(atom, 'mass') * 0.01)
### bond features
for bond in mol.GetBonds():
i = bond.GetBeginAtomIdx()
j = bond.GetEndAtomIdx()
# i->j and j->i
data['edges'] += [(i, j), (j, i)]
for name in bond_id_names:
bond_feature_id = CompoundKit.get_bond_feature_id(bond, name) + 1 # 0: OOV
data[name] += [bond_feature_id] * 2
### self loop (+2)
N = len(data[atom_id_names[0]])
for i in range(N):
data['edges'] += [(i, i)]
for name in bond_id_names:
bond_feature_id = CompoundKit.get_bond_feature_size(name) + 2 # N + 2: self loop
data[name] += [bond_feature_id] * N
### check whether edge exists
if len(data['edges']) == 0: # mol has no bonds
for name in bond_id_names:
data[name] = np.zeros((0,), dtype="int64")
data['edges'] = np.zeros((0, 2), dtype="int64")
### make ndarray and check length
for name in atom_id_names:
data[name] = np.array(data[name], 'int64')
data['mass'] = np.array(data['mass'], 'float32')
for name in bond_id_names:
data[name] = np.array(data[name], 'int64')
data['edges'] = np.array(data['edges'], 'int64')
### morgan fingerprint
data['morgan_fp'] = np.array(CompoundKit.get_morgan_fingerprint(mol), 'int64')
# data['morgan2048_fp'] = np.array(CompoundKit.get_morgan2048_fingerprint(mol), 'int64')
data['maccs_fp'] = np.array(CompoundKit.get_maccs_fingerprint(mol), 'int64')
data['daylight_fg_counts'] = np.array(CompoundKit.get_daylight_functional_group_counts(mol), 'int64')
return data
def mol_to_geognn_graph_data(mol, atom_poses, dir_type):
"""
mol: rdkit molecule
dir_type: direction type for bond_angle grpah
"""
if len(mol.GetAtoms()) == 0:
return None
data = mol_to_graph_data(mol)
data['atom_pos'] = np.array(atom_poses, 'float32')
data['bond_length'] = Compound3DKit.get_bond_lengths(data['edges'], data['atom_pos'])
BondAngleGraph_edges, bond_angles, bond_angle_dirs = \
Compound3DKit.get_superedge_angles(data['edges'], data['atom_pos'])
data['BondAngleGraph_edges'] = BondAngleGraph_edges
data['bond_angle'] = np.array(bond_angles, 'float32')
return data
def mol_to_geognn_graph_data_MMFF3d(mol):
"""tbd"""
if len(mol.GetAtoms()) <= 400:
mol, atom_poses = Compound3DKit.get_MMFF_atom_poses(mol, numConfs=10)
else:
atom_poses = Compound3DKit.get_2d_atom_poses(mol)
return mol_to_geognn_graph_data(mol, atom_poses, dir_type='HT')
def mol_to_geognn_graph_data_raw3d(mol):
"""tbd"""
atom_poses = Compound3DKit.get_atom_poses(mol, mol.GetConformer())
return mol_to_geognn_graph_data(mol, atom_poses, dir_type='HT')
def obtain_3D_mol(smiles,name):
mol = AllChem.MolFromSmiles(smiles)
new_mol = Chem.AddHs(mol)
res = AllChem.EmbedMultipleConfs(new_mol)
### MMFF generates multiple conformations
res = AllChem.MMFFOptimizeMoleculeConfs(new_mol)
new_mol = Chem.RemoveHs(new_mol)
Chem.MolToMolFile(new_mol, name+'.mol')
return new_mol
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
warnings.filterwarnings('ignore')
#============Parameter setting===============
MODEL = 'Test' #['Train','Test','Test_other_method','Test_enantiomer','Test_excel']
test_mode='fixed' #fixed or random or enantiomer(extract enantimoers)
transfer_target='All_column' #trail name
Use_geometry_enhanced=True #default:True
Use_column_info=True #default: True
atom_id_names = [
"atomic_num", "chiral_tag", "degree", "explicit_valence",
"formal_charge", "hybridization", "implicit_valence",
"is_aromatic", "total_numHs",
]
bond_id_names = [
"bond_dir", "bond_type", "is_in_ring"]
if Use_geometry_enhanced==True:
bond_float_names = ["bond_length",'prop']
if Use_geometry_enhanced==False:
bond_float_names=['prop']
bond_angle_float_names = ['bond_angle', 'TPSA', 'RASA', 'RPSA', 'MDEC', 'MATS']
column_specify={'ADH':[1,5,0,0],'ODH':[1,5,0,1],'IC':[0,5,1,2],'IA':[0,5,1,3],'OJH':[1,5,0,4],
'ASH':[1,5,0,5],'IC3':[0,3,1,6],'IE':[0,5,1,7],'ID':[0,5,1,8],'OD3':[1,3,0,9],
'IB':[0,5,1,10],'AD':[1,10,0,11],'AD3':[1,3,0,12],'IF':[0,5,1,13],'OD':[1,10,0,14],
'AS':[1,10,0,15],'OJ3':[1,3,0,16],'IG':[0,5,1,17],'AZ':[1,10,0,18],'IAH':[0,5,1,19],
'OJ':[1,10,0,20],'ICH':[0,5,1,21],'OZ3':[1,3,0,22],'IF3':[0,3,1,23],'IAU':[0,1.6,1,24]}
column_smile=['O=C(OC[C@@H](O1)[C@@H](OC)[C@H](OC(NC2=CC(C)=CC(C)=C2)=O)[C@@H](OC(NC3=CC(C)=CC(C)=C3)=O)[C@H]1OC)NC4=CC(C)=CC(C)=C4',
'O=C(OC[C@@H](O1)[C@@H](OC)[C@H](OC(NC2=CC(C)=CC(C)=C2)=O)[C@@H](OC(NC3=CC(C)=CC(C)=C3)=O)[C@@H]1OC)NC4=CC(C)=CC(C)=C4',
'O=C(OC[C@@H](O1)[C@@H](OC)[C@H](OC(NC2=CC(Cl)=CC(Cl)=C2)=O)[C@@H](OC(NC3=CC(Cl)=CC(Cl)=C3)=O)[C@@H]1OC)NC4=CC(Cl)=CC(Cl)=C4',
'O=C(OC[C@@H](O1)[C@@H](OC)[C@H](OC(NC2=CC(C)=CC(C)=C2)=O)[C@@H](OC(NC3=CC(C)=CC(C)=C3)=O)[C@H]1OC)NC4=CC(C)=CC(C)=C4',
'O=C(OC[C@@H](O1)[C@@H](OC)[C@H](OC(C2=CC=C(C)C=C2)=O)[C@@H](OC(C3=CC=C(C)C=C3)=O)[C@@H]1OC)C4=CC=C(C)C=C4',
'O=C(OC[C@@H](O1)[C@@H](OC)[C@H](OC(N[C@@H](C)C2=CC=CC=C2)=O)[C@@H](OC(N[C@@H](C)C3=CC=CC=C3)=O)[C@H]1OC)N[C@@H](C)C4=CC=CC=C4',
'O=C(OC[C@@H](O1)[C@@H](OC)[C@H](OC(NC2=CC(Cl)=CC(Cl)=C2)=O)[C@@H](OC(NC3=CC(Cl)=CC(Cl)=C3)=O)[C@@H]1OC)NC4=CC(Cl)=CC(Cl)=C4',
'O=C(OC[C@@H](O1)[C@@H](OC)[C@H](OC(NC2=CC(Cl)=CC(Cl)=C2)=O)[C@@H](OC(NC3=CC(Cl)=CC(Cl)=C3)=O)[C@H]1OC)NC4=CC(Cl)=CC(Cl)=C4',
'O=C(OC[C@@H](O1)[C@@H](OC)[C@H](OC(NC2=CC=CC(Cl)=C2)=O)[C@@H](OC(NC3=CC=CC(Cl)=C3)=O)[C@H]1OC)NC4=CC=CC(Cl)=C4',
'O=C(OC[C@@H](O1)[C@@H](OC)[C@H](OC(NC2=CC(C)=CC(C)=C2)=O)[C@@H](OC(NC3=CC(C)=CC(C)=C3)=O)[C@@H]1OC)NC4=CC(C)=CC(C)=C4',
'O=C(OC[C@@H](O1)[C@@H](OC)[C@H](OC(NC2=CC(C)=CC(C)=C2)=O)[C@@H](OC(NC3=CC(C)=CC(C)=C3)=O)[C@@H]1OC)NC4=CC(C)=CC(C)=C4',
'O=C(OC[C@@H](O1)[C@@H](OC)[C@H](OC(NC2=CC(C)=CC(C)=C2)=O)[C@@H](OC(NC3=CC(C)=CC(C)=C3)=O)[C@H]1OC)NC4=CC(C)=CC(C)=C4',
'O=C(OC[C@@H](O1)[C@@H](OC)[C@H](OC(NC2=CC(C)=CC(C)=C2)=O)[C@@H](OC(NC3=CC(C)=CC(C)=C3)=O)[C@H]1OC)NC4=CC(C)=CC(C)=C4',
'O=C(OC[C@@H](O1)[C@@H](OC)[C@H](OC(NC2=CC=C(C)C(Cl)=C2)=O)[C@@H](OC(NC3=CC=C(C)C(Cl)=C3)=O)[C@H]1OC)NC4=CC=C(C)C(Cl)=C4',
'O=C(OC[C@@H](O1)[C@@H](OC)[C@H](OC(NC2=CC(C)=CC(C)=C2)=O)[C@@H](OC(NC3=CC(C)=CC(C)=C3)=O)[C@@H]1OC)NC4=CC(C)=CC(C)=C4',
'O=C(OC[C@@H](O1)[C@@H](OC)[C@H](OC(N[C@@H](C)C2=CC=CC=C2)=O)[C@@H](OC(N[C@@H](C)C3=CC=CC=C3)=O)[C@H]1OC)N[C@@H](C)C4=CC=CC=C4',
'O=C(OC[C@@H](O1)[C@@H](OC)[C@H](OC(C2=CC=C(C)C=C2)=O)[C@@H](OC(C3=CC=C(C)C=C3)=O)[C@@H]1OC)C4=CC=C(C)C=C4',
'O=C(OC[C@@H](O1)[C@@H](OC)[C@H](OC(NC2=CC(C)=CC(Cl)=C2)=O)[C@@H](OC(NC3=CC(C)=CC(Cl)=C3)=O)[C@H]1OC)NC4=CC(C)=CC(Cl)=C4',
'O=C(OC[C@@H](O1)[C@@H](OC)[C@H](OC(NC2=CC=C(C)C(Cl)=C2)=O)[C@@H](OC(NC3=CC=C(C)C(Cl)=C3)=O)[C@H]1OC)NC4=CC=C(C)C(Cl)=C4',
'O=C(OC[C@@H](O1)[C@@H](OC)[C@H](OC(NC2=CC(C)=CC(C)=C2)=O)[C@@H](OC(NC3=CC(C)=CC(C)=C3)=O)[C@H]1OC)NC4=CC(C)=CC(C)=C4',
'O=C(OC[C@@H](O1)[C@@H](OC)[C@H](OC(C2=CC=C(C)C=C2)=O)[C@@H](OC(C3=CC=C(C)C=C3)=O)[C@@H]1OC)C4=CC=C(C)C=C4',
'O=C(OC[C@@H](O1)[C@@H](OC)[C@H](OC(NC2=CC(Cl)=CC(Cl)=C2)=O)[C@@H](OC(NC3=CC(Cl)=CC(Cl)=C3)=O)[C@@H]1OC)NC4=CC(Cl)=CC(Cl)=C4',
'O=C(OC[C@@H](O1)[C@@H](OC)[C@H](OC(NC2=CC=C(C)C(Cl)=C2)=O)[C@@H](OC(NC3=CC=C(C)C(Cl)=C3)=O)[C@@H]1OC)NC4=CC=C(C)C(Cl)=C4',
'O=C(OC[C@@H](O1)[C@@H](OC)[C@H](OC(NC2=CC=C(C)C(Cl)=C2)=O)[C@@H](OC(NC3=CC=C(C)C(Cl)=C3)=O)[C@H]1OC)NC4=CC=C(C)C(Cl)=C4',
'O=C(OC[C@@H](O1)[C@@H](OC)[C@H](OC(NC2=CC(C)=CC(C)=C2)=O)[C@@H](OC(NC3=CC(C)=CC(C)=C3)=O)[C@H]1OC)NC4=CC(C)=CC(C)=C4']
column_name=['ADH','ODH','IC','IA','OJH','ASH','IC3','IE','ID','OD3', 'IB','AD','AD3',
'IF','OD','AS','OJ3','IG','AZ','IAH','OJ','ICH','OZ3','IF3','IAU']
full_atom_feature_dims = get_atom_feature_dims(atom_id_names)
full_bond_feature_dims = get_bond_feature_dims(bond_id_names)
if Use_column_info==True:
bond_id_names.extend(['coated', 'immobilized'])
bond_float_names.extend(['diameter'])
if Use_geometry_enhanced==True:
bond_angle_float_names.extend(['column_TPSA', 'column_TPSA', 'column_TPSA', 'column_MDEC', 'column_MATS'])
else:
bond_float_names.extend(['column_TPSA', 'column_TPSA', 'column_TPSA', 'column_MDEC', 'column_MATS'])
full_bond_feature_dims.extend([2,2])
calc = Calculator(descriptors, ignore_3D=False)
class AtomEncoder(torch.nn.Module):
def __init__(self, emb_dim):
super(AtomEncoder, self).__init__()
self.atom_embedding_list = torch.nn.ModuleList()
for i, dim in enumerate(full_atom_feature_dims):
emb = torch.nn.Embedding(dim + 5, emb_dim) # 不同维度的属性用不同的Embedding方法
torch.nn.init.xavier_uniform_(emb.weight.data)
self.atom_embedding_list.append(emb)
def forward(self, x):
x_embedding = 0
for i in range(x.shape[1]):
x_embedding += self.atom_embedding_list[i](x[:, i])
return x_embedding
class BondEncoder(torch.nn.Module):
def __init__(self, emb_dim):
super(BondEncoder, self).__init__()
self.bond_embedding_list = torch.nn.ModuleList()
for i, dim in enumerate(full_bond_feature_dims):
emb = torch.nn.Embedding(dim + 5, emb_dim)
torch.nn.init.xavier_uniform_(emb.weight.data)
self.bond_embedding_list.append(emb)
def forward(self, edge_attr):
bond_embedding = 0
for i in range(edge_attr.shape[1]):
bond_embedding += self.bond_embedding_list[i](edge_attr[:, i])
return bond_embedding
class RBF(torch.nn.Module):
"""
Radial Basis Function
"""
def __init__(self, centers, gamma, dtype='float32'):
super(RBF, self).__init__()
self.centers = centers.reshape([1, -1])
self.gamma = gamma
def forward(self, x):
"""
Args:
x(tensor): (-1, 1).
Returns:
y(tensor): (-1, n_centers)
"""
x = x.reshape([-1, 1])
return torch.exp(-self.gamma * torch.square(x - self.centers))
class BondFloatRBF(torch.nn.Module):
"""
Bond Float Encoder using Radial Basis Functions
"""
def __init__(self, bond_float_names, embed_dim, rbf_params=None):
super(BondFloatRBF, self).__init__()
self.bond_float_names = bond_float_names
if rbf_params is None:
self.rbf_params = {
'bond_length': (nn.Parameter(torch.arange(0, 2, 0.1)), nn.Parameter(torch.Tensor([10.0]))),
# (centers, gamma)
'prop': (nn.Parameter(torch.arange(0, 1, 0.05)), nn.Parameter(torch.Tensor([1.0]))),
'diameter': (nn.Parameter(torch.arange(3, 12, 0.3)), nn.Parameter(torch.Tensor([1.0]))),
##=========Only for pure GNN===============
'column_TPSA': (nn.Parameter(torch.arange(0, 1, 0.05).to(torch.float32)), nn.Parameter(torch.Tensor([1.0]))),
'column_RASA': (nn.Parameter(torch.arange(0, 1, 0.05)), nn.Parameter(torch.Tensor([1.0]))),
'column_RPSA': (nn.Parameter(torch.arange(0, 1, 0.05)), nn.Parameter(torch.Tensor([1.0]))),
'column_MDEC': (nn.Parameter(torch.arange(0, 10, 0.5)), nn.Parameter(torch.Tensor([2.0]))),
'column_MATS': (nn.Parameter(torch.arange(0, 1, 0.05)), nn.Parameter(torch.Tensor([1.0]))),
}
else:
self.rbf_params = rbf_params
self.linear_list = torch.nn.ModuleList()
self.rbf_list = torch.nn.ModuleList()
for name in self.bond_float_names:
centers, gamma = self.rbf_params[name]
rbf = RBF(centers.to(device), gamma.to(device))
self.rbf_list.append(rbf)
linear = torch.nn.Linear(len(centers), embed_dim).to(device)
self.linear_list.append(linear)
def forward(self, bond_float_features):
"""
Args:
bond_float_features(dict of tensor): bond float features.
"""
out_embed = 0
for i, name in enumerate(self.bond_float_names):
x = bond_float_features[:, i].reshape(-1, 1)
rbf_x = self.rbf_list[i](x)
out_embed += self.linear_list[i](rbf_x)
return out_embed
class BondAngleFloatRBF(torch.nn.Module):
"""
Bond Angle Float Encoder using Radial Basis Functions
"""
def __init__(self, bond_angle_float_names, embed_dim, rbf_params=None):
super(BondAngleFloatRBF, self).__init__()
self.bond_angle_float_names = bond_angle_float_names
if rbf_params is None:
self.rbf_params = {
'bond_angle': (nn.Parameter(torch.arange(0, torch.pi, 0.1)), nn.Parameter(torch.Tensor([10.0]))),
}
else:
self.rbf_params = rbf_params
self.linear_list = torch.nn.ModuleList()
self.rbf_list = torch.nn.ModuleList()
for name in self.bond_angle_float_names:
if name == 'bond_angle':
centers, gamma = self.rbf_params[name]
rbf = RBF(centers.to(device), gamma.to(device))
self.rbf_list.append(rbf)
linear = nn.Linear(len(centers), embed_dim)
self.linear_list.append(linear)
else:
linear = nn.Linear(len(self.bond_angle_float_names) - 1, embed_dim)
self.linear_list.append(linear)
break
def forward(self, bond_angle_float_features):
"""
Args:
bond_angle_float_features(dict of tensor): bond angle float features.
"""
out_embed = 0
for i, name in enumerate(self.bond_angle_float_names):
if name == 'bond_angle':
x = bond_angle_float_features[:, i].reshape(-1, 1)
rbf_x = self.rbf_list[i](x)
out_embed += self.linear_list[i](rbf_x)
else:
x = bond_angle_float_features[:, 1:]
out_embed += self.linear_list[i](x)
break
return out_embed
class GINConv(MessagePassing):
def __init__(self, emb_dim):
'''
emb_dim (int): node embedding dimensionality
'''
super(GINConv, self).__init__(aggr="add")
self.mlp = nn.Sequential(nn.Linear(emb_dim, emb_dim), nn.BatchNorm1d(emb_dim), nn.ReLU(),
nn.Linear(emb_dim, emb_dim))
self.eps = nn.Parameter(torch.Tensor([0]))
def forward(self, x, edge_index, edge_attr):
edge_embedding = edge_attr
out = self.mlp((1 + self.eps) * x + self.propagate(edge_index, x=x, edge_attr=edge_embedding))
return out
def message(self, x_j, edge_attr):
return F.relu(x_j + edge_attr)
def update(self, aggr_out):
return aggr_out
# GNN to generate node embedding
class GINNodeEmbedding(torch.nn.Module):
"""
Output:
node representations
"""
def __init__(self, num_layers, emb_dim, drop_ratio=0.5, JK="last", residual=False):
"""GIN Node Embedding Module
采用多层GINConv实现图上结点的嵌入。
"""
super(GINNodeEmbedding, self).__init__()
self.num_layers = num_layers
self.drop_ratio = drop_ratio
self.JK = JK
# add residual connection or not
self.residual = residual
if self.num_layers < 2:
raise ValueError("Number of GNN layers must be greater than 1.")
self.atom_encoder = AtomEncoder(emb_dim)
self.bond_encoder=BondEncoder(emb_dim)
self.bond_float_encoder=BondFloatRBF(bond_float_names,emb_dim)
self.bond_angle_encoder=BondAngleFloatRBF(bond_angle_float_names,emb_dim)
# List of GNNs
self.convs = torch.nn.ModuleList()
self.convs_bond_angle=torch.nn.ModuleList()
self.convs_bond_float=torch.nn.ModuleList()
self.convs_bond_embeding=torch.nn.ModuleList()
self.convs_angle_float=torch.nn.ModuleList()
self.batch_norms = torch.nn.ModuleList()
self.batch_norms_ba = torch.nn.ModuleList()
for layer in range(num_layers):
self.convs.append(GINConv(emb_dim))
self.convs_bond_angle.append(GINConv(emb_dim))
self.convs_bond_embeding.append(BondEncoder(emb_dim))
self.convs_bond_float.append(BondFloatRBF(bond_float_names,emb_dim))
self.convs_angle_float.append(BondAngleFloatRBF(bond_angle_float_names,emb_dim))
self.batch_norms.append(torch.nn.BatchNorm1d(emb_dim))
self.batch_norms_ba.append(torch.nn.BatchNorm1d(emb_dim))
def forward(self, batched_atom_bond,batched_bond_angle):
x, edge_index, edge_attr = batched_atom_bond.x, batched_atom_bond.edge_index, batched_atom_bond.edge_attr
edge_index_ba,edge_attr_ba= batched_bond_angle.edge_index, batched_bond_angle.edge_attr
# computing input node embedding
h_list = [self.atom_encoder(x)] # 先将类别型原子属性转化为原子嵌入
if Use_geometry_enhanced==True:
h_list_ba=[self.bond_float_encoder(edge_attr[:,len(bond_id_names):edge_attr.shape[1]+1].to(torch.float32))+self.bond_encoder(edge_attr[:,0:len(bond_id_names)].to(torch.int64))]
for layer in range(self.num_layers):
h = self.convs[layer](h_list[layer], edge_index, h_list_ba[layer])
cur_h_ba=self.convs_bond_embeding[layer](edge_attr[:,0:len(bond_id_names)].to(torch.int64))+self.convs_bond_float[layer](edge_attr[:,len(bond_id_names):edge_attr.shape[1]+1].to(torch.float32))
cur_angle_hidden=self.convs_angle_float[layer](edge_attr_ba)
h_ba=self.convs_bond_angle[layer](cur_h_ba, edge_index_ba, cur_angle_hidden)
if layer == self.num_layers - 1:
# remove relu for the last layer
h = F.dropout(h, self.drop_ratio, training=self.training)
h_ba = F.dropout(h_ba, self.drop_ratio, training=self.training)
else:
h = F.dropout(F.relu(h), self.drop_ratio, training=self.training)
h_ba = F.dropout(F.relu(h_ba), self.drop_ratio, training=self.training)
if self.residual:
h += h_list[layer]
h_ba+=h_list_ba[layer]
h_list.append(h)
h_list_ba.append(h_ba)
# Different implementations of Jk-concat
if self.JK == "last":
node_representation = h_list[-1]
edge_representation = h_list_ba[-1]
elif self.JK == "sum":
node_representation = 0
edge_representation = 0
for layer in range(self.num_layers + 1):
node_representation += h_list[layer]
edge_representation += h_list_ba[layer]
return node_representation,edge_representation
if Use_geometry_enhanced==False:
for layer in range(self.num_layers):
h = self.convs[layer](h_list[layer], edge_index,
self.convs_bond_embeding[layer](edge_attr[:, 0:len(bond_id_names)].to(torch.int64)) +
self.convs_bond_float[layer](
edge_attr[:, len(bond_id_names):edge_attr.shape[1] + 1].to(torch.float32)))
h = self.batch_norms[layer](h)
if layer == self.num_layers - 1:
# remove relu for the last layer
h = F.dropout(h, self.drop_ratio, training=self.training)
else:
h = F.dropout(F.relu(h), self.drop_ratio, training=self.training)
if self.residual:
h += h_list[layer]
h_list.append(h)
# Different implementations of Jk-concat
if self.JK == "last":
node_representation = h_list[-1]
elif self.JK == "sum":
node_representation = 0
for layer in range(self.num_layers + 1):
node_representation += h_list[layer]
return node_representation
class GINGraphPooling(nn.Module):
def __init__(self, num_tasks=1, num_layers=5, emb_dim=300, residual=False, drop_ratio=0, JK="last", graph_pooling="attention",
descriptor_dim=1781):
"""GIN Graph Pooling Module
此模块首先采用GINNodeEmbedding模块对图上每一个节点做嵌入,然后对节点嵌入做池化得到图的嵌入,最后用一层线性变换得到图的最终的表示(graph representation)。
Args:
num_tasks (int, optional): number of labels to be predicted. Defaults to 1 (控制了图表示的维度,dimension of graph representation).
num_layers (int, optional): number of GINConv layers. Defaults to 5.
emb_dim (int, optional): dimension of node embedding. Defaults to 300.
residual (bool, optional): adding residual connection or not. Defaults to False.
drop_ratio (float, optional): dropout rate. Defaults to 0.
JK (str, optional): 可选的值为"last"和"sum"。选"last",只取最后一层的结点的嵌入,选"sum"对各层的结点的嵌入求和。Defaults to "last".
graph_pooling (str, optional): pooling method of node embedding. 可选的值为"sum","mean","max","attention"和"set2set"。 Defaults to "sum".
Out:
graph representation
"""
super(GINGraphPooling, self).__init__()
self.num_layers = num_layers
self.drop_ratio = drop_ratio
self.JK = JK
self.emb_dim = emb_dim
self.num_tasks = num_tasks
self.descriptor_dim=descriptor_dim
if self.num_layers < 2:
raise ValueError("Number of GNN layers must be greater than 1.")
self.gnn_node = GINNodeEmbedding(num_layers, emb_dim, JK=JK, drop_ratio=drop_ratio, residual=residual)
# Pooling function to generate whole-graph embeddings
if graph_pooling == "sum":
self.pool = global_add_pool
elif graph_pooling == "mean":
self.pool = global_mean_pool
elif graph_pooling == "max":
self.pool = global_max_pool
elif graph_pooling == "attention":
self.pool = GlobalAttention(gate_nn=nn.Sequential(
nn.Linear(emb_dim, emb_dim), nn.BatchNorm1d(emb_dim), nn.ReLU(), nn.Linear(emb_dim, 1)))
elif graph_pooling == "set2set":
self.pool = Set2Set(emb_dim, processing_steps=2)
else:
raise ValueError("Invalid graph pooling type.")
if graph_pooling == "set2set":
self.graph_pred_linear = nn.Linear(self.emb_dim, self.num_tasks)
else:
self.graph_pred_linear = nn.Linear(self.emb_dim, self.num_tasks)
self.NN_descriptor = nn.Sequential(nn.Linear(self.descriptor_dim, self.emb_dim),
nn.Sigmoid(),
nn.Linear(self.emb_dim, self.emb_dim))
self.sigmoid = nn.Sigmoid()
def forward(self, batched_atom_bond,batched_bond_angle):
if Use_geometry_enhanced==True:
h_node,h_node_ba= self.gnn_node(batched_atom_bond,batched_bond_angle)
else:
h_node= self.gnn_node(batched_atom_bond, batched_bond_angle)
h_graph = self.pool(h_node, batched_atom_bond.batch)
output = self.graph_pred_linear(h_graph)
if self.training:
return output,h_graph
else:
# At inference time, relu is applied to output to ensure positivity
return torch.clamp(output, min=0, max=1e8),h_graph
def mord(mol, nBits=1826, errors_as_zeros=True):
try:
result = calc(mol)
desc_list = [r if not is_missing(r) else 0 for r in result]
np_arr = np.array(desc_list)
return np_arr
except:
return np.NaN if not errors_as_zeros else np.zeros((nBits,), dtype=np.float32)
def load_3D_mol():
dir = 'mol_save/'
for root, dirs, files in os.walk(dir):
file_names = files
file_names.sort(key=lambda x: int(x[x.find('_') + 5:x.find(".")])) # 按照前面的数字字符排序
mol_save = []
for file_name in file_names:
mol_save.append(Chem.MolFromMolFile(dir + file_name))
return mol_save
def parse_args():
parser = argparse.ArgumentParser(description='Graph data miming with GNN')
parser.add_argument('--task_name', type=str, default='GINGraphPooling',
help='task name')
parser.add_argument('--device', type=int, default=0,
help='which gpu to use if any (default: 0)')
parser.add_argument('--num_layers', type=int, default=5,
help='number of GNN message passing layers (default: 5)')
parser.add_argument('--graph_pooling', type=str, default='sum',
help='graph pooling strategy mean or sum (default: sum)')
parser.add_argument('--emb_dim', type=int, default=128,
help='dimensionality of hidden units in GNNs (default: 256)')
parser.add_argument('--drop_ratio', type=float, default=0.,
help='dropout ratio (default: 0.)')
parser.add_argument('--save_test', action='store_true')
parser.add_argument('--batch_size', type=int, default=2048,
help='input batch size for training (default: 512)')
parser.add_argument('--epochs', type=int, default=1000,
help='number of epochs to train (default: 100)')
parser.add_argument('--weight_decay', type=float, default=0.00001,
help='weight decay')
parser.add_argument('--early_stop', type=int, default=10,
help='early stop (default: 10)')
parser.add_argument('--num_workers', type=int, default=0,
help='number of workers (default: 0)')
parser.add_argument('--dataset_root', type=str, default="dataset",
help='dataset root')
args = parser.parse_args()
return args
def calc_dragon_type_desc(mol):
compound_mol = mol
compound_MolWt = Descriptors.ExactMolWt(compound_mol)
compound_TPSA = Chem.rdMolDescriptors.CalcTPSA(compound_mol)
compound_nRotB = Descriptors.NumRotatableBonds(compound_mol) # Number of rotable bonds
compound_HBD = Descriptors.NumHDonors(compound_mol) # Number of H bond donors
compound_HBA = Descriptors.NumHAcceptors(compound_mol) # Number of H bond acceptors
compound_LogP = Descriptors.MolLogP(compound_mol) # LogP
return rdMolDescriptors.CalcAUTOCORR3D(mol) + rdMolDescriptors.CalcMORSE(mol) + \
rdMolDescriptors.CalcRDF(mol) + rdMolDescriptors.CalcWHIM(mol) + \
[compound_MolWt, compound_TPSA, compound_nRotB, compound_HBD, compound_HBA, compound_LogP]
def eval(model, device, loader_atom_bond,loader_bond_angle):
model.eval()
y_true = []
y_pred = []
y_pred_10=[]
y_pred_90=[]
with torch.no_grad():
for _, batch in enumerate(zip(loader_atom_bond,loader_bond_angle)):
batch_atom_bond = batch[0]
batch_bond_angle = batch[1]
batch_atom_bond = batch_atom_bond.to(device)
batch_bond_angle = batch_bond_angle.to(device)
pred = model(batch_atom_bond,batch_bond_angle)[0]
y_true.append(batch_atom_bond.y.detach().cpu().reshape(-1))
y_pred.append(pred[:,1].detach().cpu())
y_pred_10.append(pred[:,0].detach().cpu())
y_pred_90.append(pred[:,2].detach().cpu())
y_true = torch.cat(y_true, dim=0)
y_pred = torch.cat(y_pred, dim=0)
y_pred_10 = torch.cat(y_pred_10, dim=0)
y_pred_90 = torch.cat(y_pred_90, dim=0)
# plt.plot(y_pred.cpu().data.numpy(),c='blue')
# plt.plot(y_pred_10.cpu().data.numpy(),c='yellow')
# plt.plot(y_pred_90.cpu().data.numpy(),c='black')
# plt.plot(y_true.cpu().data.numpy(),c='red')
#plt.show()
input_dict = {"y_true": y_true, "y_pred": y_pred}
return torch.mean((y_true - y_pred) ** 2).data.numpy()
def cal_prob(prediction):
'''
calculate the separation probability Sp
'''
#input prediction=[pred_1,pred_2]
#output: Sp
a=prediction[0][0]
b=prediction[1][0]
if a[2]<b[0]:
return 1
elif a[0]>b[2]:
return 1
else:
length=min(a[2],b[2])-max(a[0],b[0])
all=max(a[2],b[2])-min(a[0],b[0])
return 1-length/(all)
args = parse_args()
nn_params = {
'num_tasks': 3,
'num_layers': args.num_layers,
'emb_dim': args.emb_dim,
'drop_ratio': args.drop_ratio,
'graph_pooling': args.graph_pooling,
'descriptor_dim': 1827
}
device ='cpu'
model = GINGraphPooling(**nn_params).to(device)
'''
Given two compounds and predict the RT in different condition
'''
def predict_separate(smile_1, smile_2, input_eluent, input_speed, input_column):
if input_speed==None:
out_put='Please input Speed!'
return out_put
if input_speed==0:
out_put='Speed cannot be 0!'
return out_put
if input_eluent==None:
out_put='Please input eluent!'
return out_put
speed = []
eluent = []
smiles=[smile_1,smile_2]
for i in range(2):
speed.append(input_speed)
eluent.append(input_eluent)
model.load_state_dict(
torch.load(f'GeoGNN_model.pth',map_location=torch.device('cpu')),strict=False)
model.eval()
column_descriptor = np.load('column_descriptor.npy', allow_pickle=True)
predict_column=input_column
col_specify = column_specify[predict_column]
col_des = np.array(column_descriptor[col_specify[3]])
mols = []
y_pred = []
all_descriptor = []
dataset = []
for smile in smiles:
mol = Chem.MolFromSmiles(smile)
mols.append(mol)
for smile in smiles:
mol = obtain_3D_mol(smile, 'conform')
mol = Chem.MolFromMolFile(f"conform.mol")
all_descriptor.append(mord(mol))
dataset.append(mol_to_geognn_graph_data_MMFF3d(mol))
for i in range(0, len(dataset)):
data = dataset[i]
atom_feature = []
bond_feature = []
for name in atom_id_names:
atom_feature.append(data[name])
for name in bond_id_names[0:3]:
bond_feature.append(data[name])
atom_feature = torch.from_numpy(np.array(atom_feature).T).to(torch.int64)
bond_feature = torch.from_numpy(np.array(bond_feature).T).to(torch.int64)
bond_float_feature = torch.from_numpy(data['bond_length'].astype(np.float32))
bond_angle_feature = torch.from_numpy(data['bond_angle'].astype(np.float32))
y = torch.Tensor([float(speed[i])])
edge_index = torch.from_numpy(data['edges'].T).to(torch.int64)
bond_index = torch.from_numpy(data['BondAngleGraph_edges'].T).to(torch.int64)
prop = torch.ones([bond_feature.shape[0]]) * eluent[i]
coated = torch.ones([bond_feature.shape[0]]) * col_specify[0]
diameter = torch.ones([bond_feature.shape[0]]) * col_specify[1]
immobilized = torch.ones([bond_feature.shape[0]]) * col_specify[2]
TPSA = torch.ones([bond_angle_feature.shape[0]]) * all_descriptor[i][820] / 100
RASA = torch.ones([bond_angle_feature.shape[0]]) * all_descriptor[i][821]
RPSA = torch.ones([bond_angle_feature.shape[0]]) * all_descriptor[i][822]
MDEC = torch.ones([bond_angle_feature.shape[0]]) * all_descriptor[i][1568]
MATS = torch.ones([bond_angle_feature.shape[0]]) * all_descriptor[i][457]
col_TPSA = torch.ones([bond_angle_feature.shape[0]]) * col_des[820] / 100
col_RASA = torch.ones([bond_angle_feature.shape[0]]) * col_des[821]
col_RPSA = torch.ones([bond_angle_feature.shape[0]]) * col_des[822]
col_MDEC = torch.ones([bond_angle_feature.shape[0]]) * col_des[1568]
col_MATS = torch.ones([bond_angle_feature.shape[0]]) * col_des[457]
bond_feature = torch.cat([bond_feature, coated.reshape(-1, 1)], dim=1)
bond_feature = torch.cat([bond_feature, immobilized.reshape(-1, 1)], dim=1)
bond_feature = torch.cat([bond_feature, bond_float_feature.reshape(-1, 1)], dim=1)
bond_feature = torch.cat([bond_feature, prop.reshape(-1, 1)], dim=1)
bond_feature = torch.cat([bond_feature, diameter.reshape(-1, 1)], dim=1)
bond_angle_feature = torch.cat([bond_angle_feature.reshape(-1, 1), TPSA.reshape(-1, 1)], dim=1)
bond_angle_feature = torch.cat([bond_angle_feature, RASA.reshape(-1, 1)], dim=1)
bond_angle_feature = torch.cat([bond_angle_feature, RPSA.reshape(-1, 1)], dim=1)
bond_angle_feature = torch.cat([bond_angle_feature, MDEC.reshape(-1, 1)], dim=1)
bond_angle_feature = torch.cat([bond_angle_feature, MATS.reshape(-1, 1)], dim=1)
bond_angle_feature = torch.cat([bond_angle_feature, col_TPSA.reshape(-1, 1)], dim=1)
bond_angle_feature = torch.cat([bond_angle_feature, col_RASA.reshape(-1, 1)], dim=1)
bond_angle_feature = torch.cat([bond_angle_feature, col_RPSA.reshape(-1, 1)], dim=1)
bond_angle_feature = torch.cat([bond_angle_feature, col_MDEC.reshape(-1, 1)], dim=1)
bond_angle_feature = torch.cat([bond_angle_feature, col_MATS.reshape(-1, 1)], dim=1)
data_atom_bond = Data(atom_feature, edge_index, bond_feature, y)
data_bond_angle = Data(edge_index=bond_index, edge_attr=bond_angle_feature)
pred, h_graph = model(data_atom_bond.to(device), data_bond_angle.to(device))
y_pred.append(pred.detach().cpu().data.numpy() / speed[i])
else:
Sp=cal_prob(y_pred)
output_1=f'For smile_1,\n the predicted value is: {str(np.round(y_pred[0][0][1],3))}\n'
output_2 = f'For smile_2,\n the predicted value is: {str(np.round(y_pred[1][0][1],3))}\n'
output_3=f'The separation probability is: {str(np.round(Sp,3))}'
out_put=output_1+output_2+output_3
return out_put
def column_recommendation(smile_1, smile_2, input_eluent, input_speed):
if input_speed==None:
out_put='Please input Speed!'
return out_put
if input_speed==0:
out_put='Speed cannot be 0!'
return out_put
if input_eluent==None:
out_put='Please input eluent!'
return out_put
speed = []
eluent = []
Prediction = []
Sp = []
smiles = [smile_1, smile_2]
for i in range(2):
speed.append(input_speed)
eluent.append(input_eluent)
model.load_state_dict(
torch.load(f'GeoGNN_model.pth',map_location=torch.device('cpu')),strict=False)
model.eval()
for predict_column in column_specify.keys():
column_descriptor = np.load('column_descriptor.npy', allow_pickle=True)
col_specify = column_specify[predict_column]
col_des = np.array(column_descriptor[col_specify[3]])
mols = []
y_pred = []
all_descriptor = []
dataset = []
for smile in smiles:
mol = Chem.MolFromSmiles(smile)
mols.append(mol)
for smile in smiles:
mol = obtain_3D_mol(smile, 'conform')
mol = Chem.MolFromMolFile(f"conform.mol")
all_descriptor.append(mord(mol))
dataset.append(mol_to_geognn_graph_data_MMFF3d(mol))
for i in range(0, len(dataset)):
data = dataset[i]
atom_feature = []
bond_feature = []
for name in atom_id_names:
atom_feature.append(data[name])
for name in bond_id_names[0:3]:
bond_feature.append(data[name])
atom_feature = torch.from_numpy(np.array(atom_feature).T).to(torch.int64)
bond_feature = torch.from_numpy(np.array(bond_feature).T).to(torch.int64)
bond_float_feature = torch.from_numpy(data['bond_length'].astype(np.float32))
bond_angle_feature = torch.from_numpy(data['bond_angle'].astype(np.float32))
y = torch.Tensor([float(speed[i])])
edge_index = torch.from_numpy(data['edges'].T).to(torch.int64)
bond_index = torch.from_numpy(data['BondAngleGraph_edges'].T).to(torch.int64)
prop = torch.ones([bond_feature.shape[0]]) * eluent[i]
coated = torch.ones([bond_feature.shape[0]]) * col_specify[0]
diameter = torch.ones([bond_feature.shape[0]]) * col_specify[1]
immobilized = torch.ones([bond_feature.shape[0]]) * col_specify[2]
TPSA = torch.ones([bond_angle_feature.shape[0]]) * all_descriptor[i][820] / 100
RASA = torch.ones([bond_angle_feature.shape[0]]) * all_descriptor[i][821]
RPSA = torch.ones([bond_angle_feature.shape[0]]) * all_descriptor[i][822]
MDEC = torch.ones([bond_angle_feature.shape[0]]) * all_descriptor[i][1568]
MATS = torch.ones([bond_angle_feature.shape[0]]) * all_descriptor[i][457]
col_TPSA = torch.ones([bond_angle_feature.shape[0]]) * col_des[820] / 100
col_RASA = torch.ones([bond_angle_feature.shape[0]]) * col_des[821]
col_RPSA = torch.ones([bond_angle_feature.shape[0]]) * col_des[822]
col_MDEC = torch.ones([bond_angle_feature.shape[0]]) * col_des[1568]
col_MATS = torch.ones([bond_angle_feature.shape[0]]) * col_des[457]
bond_feature = torch.cat([bond_feature, coated.reshape(-1, 1)], dim=1)
bond_feature = torch.cat([bond_feature, immobilized.reshape(-1, 1)], dim=1)
bond_feature = torch.cat([bond_feature, bond_float_feature.reshape(-1, 1)], dim=1)
bond_feature = torch.cat([bond_feature, prop.reshape(-1, 1)], dim=1)
bond_feature = torch.cat([bond_feature, diameter.reshape(-1, 1)], dim=1)
bond_angle_feature = torch.cat([bond_angle_feature.reshape(-1, 1), TPSA.reshape(-1, 1)], dim=1)
bond_angle_feature = torch.cat([bond_angle_feature, RASA.reshape(-1, 1)], dim=1)
bond_angle_feature = torch.cat([bond_angle_feature, RPSA.reshape(-1, 1)], dim=1)
bond_angle_feature = torch.cat([bond_angle_feature, MDEC.reshape(-1, 1)], dim=1)
bond_angle_feature = torch.cat([bond_angle_feature, MATS.reshape(-1, 1)], dim=1)
bond_angle_feature = torch.cat([bond_angle_feature, col_TPSA.reshape(-1, 1)], dim=1)
bond_angle_feature = torch.cat([bond_angle_feature, col_RASA.reshape(-1, 1)], dim=1)
bond_angle_feature = torch.cat([bond_angle_feature, col_RPSA.reshape(-1, 1)], dim=1)
bond_angle_feature = torch.cat([bond_angle_feature, col_MDEC.reshape(-1, 1)], dim=1)
bond_angle_feature = torch.cat([bond_angle_feature, col_MATS.reshape(-1, 1)], dim=1)
data_atom_bond = Data(atom_feature, edge_index, bond_feature, y)
data_bond_angle = Data(edge_index=bond_index, edge_attr=bond_angle_feature)
pred, h_graph = model(data_atom_bond.to(device), data_bond_angle.to(device))
y_pred.append(pred.detach().cpu().data.numpy() / speed[i])
Prediction.append(y_pred)
Sp.append(cal_prob(y_pred))
Prediction_1=np.squeeze(np.array(Prediction))[:,0,1]
Prediction_2 = np.squeeze(np.array(Prediction))[:, 1, 1]
Sp=np.array(Sp)
result=pd.DataFrame({'Column_name':column_specify.keys(),'RT_1':Prediction_1,'RT_2':Prediction_2,'Separation_probability':Sp})
result= result[result.loc[:]!=0].dropna()
result['RT_1'] = result['RT_1'].apply(lambda x: format(x, '.2f'))
result['RT_2'] = result['RT_2'].apply(lambda x: format(x, '.2f'))
result = result.sort_values(by="Separation_probability", ascending=False)
result['Separation_probability'] = result['Separation_probability'].apply(lambda x: format(x, '.2%'))
return result
if __name__=='__main__':
model_card = f"""
## Description\n
It is a app for predicting retention times in HPLC and recommend the best HPLC column type for chromatographic enantioseparation.\n\n
Input:\n
·smile_1 and smile 2: smiles of two molecules (especially enantiomers)\n
·input_eluent: the ratio of eluent (hexane/2-propanol). For example: input 0.02 for hexane/2-propanol=98/02\n
·input_spped: the flow rate of HPLC (mL/min)\n
·column_name: select a column type in the dropdown\n
Output:\n
·The predicted retention time for two molecules
·The separation probability (Sp) of two molecules, a higher Sp indicates that the molecules is easy to separate in HPLC under given condition (see Citation 1).\n
## Citation\n
We would appreciate it if you use our software and give us credit in the acknowledgements section of your paper:\n
we use RF prediction software in our synthesis work. [Citation 1, Citation 2]\n
Citation1: H. Xu, J. Lin, D. Zhang, F. Mo, Retention Time Prediction for Chromatographic Enantioseparation by Quantile Geometry-enhanced Graph Neural Network, arxiv:2211.03602\n
Citation2: https://huggingface.co/spaces/woshixuhao/Chromatographic_Enantioseparation \n
Business applications require authorization!\n
## Function\n
Single prediction: predict a compound under a given condition including eluent, flow rate and column type\n
Column recommendation: give the separation probability of two molecules (especially enantiomers) under all column types\n
"""
demo_mark = gr.Blocks()
with demo_mark:
gr.Markdown('''
<div>
<h1 style='text-align: center'>Chromatographic enantioseparation prediction</h1>
</div>
''')
gr.Markdown(model_card)
demo_1=gr.Interface(fn=predict_separate, inputs=["text", "text", "number", "number",
gr.Dropdown(['ADH', 'ODH', 'IC', 'IA', 'OJH', 'ASH', 'IC3',
'IE', 'ID', 'OD3', 'IB', 'AD', 'AD3', 'IF', 'OD',
'AS', 'OJ3', 'IG', 'AZ', 'IAH', 'OJ',
'ICH', 'OZ3', 'IF3', 'IAU'], label="Column type",
info="Choose a HPLC column")], outputs=['text'])
demo_2=gr.Interface(fn=column_recommendation, inputs=["text", "text", "number", "number"],
outputs=['dataframe'])
demo=gr.TabbedInterface([demo_mark,demo_1, demo_2], ["Markdown","Single prediction", "Column recommendation"])
demo.launch()