ControlAR / app.py
wondervictor
add requirements
66ffc69
raw
history blame
1.51 kB
from PIL import Image
import gradio as gr
from huggingface_hub import hf_hub_download
from model import Model
from app_canny import create_demo as create_demo_canny
from app_depth import create_demo as create_demo_depth
import os
hf_hub_download(repo_id='wondervictor/ControlAR',
filename='canny_MR.safetensors',
local_dir='./checkpoints/')
hf_hub_download(repo_id='wondervictor/ControlAR',
filename='depth_MR.safetensors',
local_dir='./checkpoints/')
# hf_hub_download('google/flan-t5-xl', cache_dir='./checkpoints/')
DESCRIPTION = "# [ControlAR: Controllable Image Generation with Autoregressive Models](https://arxiv.org/abs/2410.02705) \n ### The first row in outputs is the input image and condition. The second row is the images generated by ControlAR. \n ### You can run locally by following the instruction on our [Github Repo](https://github.com/hustvl/ControlAR)."
SHOW_DUPLICATE_BUTTON = os.getenv("SHOW_DUPLICATE_BUTTON") == "1"
model = Model()
device = "cuda"
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=SHOW_DUPLICATE_BUTTON,
)
with gr.Tabs():
with gr.TabItem("Depth"):
create_demo_depth(model.process_depth)
with gr.TabItem("Canny"):
create_demo_canny(model.process_canny)
if __name__ == "__main__":
demo.launch(share=False)