File size: 8,886 Bytes
a49d0a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66ffc69
 
a49d0a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
876dc56
a49d0a8
 
 
 
 
 
 
876dc56
 
 
 
 
 
a49d0a8
 
 
 
876dc56
a49d0a8
 
 
 
 
b962858
a49d0a8
 
 
 
 
 
 
 
 
 
 
876dc56
a49d0a8
 
 
 
b962858
a49d0a8
 
 
 
 
876dc56
b962858
d8de5a4
 
a49d0a8
 
 
 
 
 
fc47e93
a49d0a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
876dc56
a49d0a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc47e93
a49d0a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import gc
import spaces
from safetensors.torch import load_file
from autoregressive.models.gpt_t2i import GPT_models
from tokenizer.tokenizer_image.vq_model import VQ_models
from language.t5 import T5Embedder
import torch
import numpy as np
import PIL
from PIL import Image
from condition.canny import CannyDetector
import time
from autoregressive.models.generate import generate
from condition.midas.depth import MidasDetector

models = {
    "canny": "checkpoints/canny_MR.safetensors",
    "depth": "checkpoints/depth_MR.safetensors",
}


def resize_image_to_16_multiple(image, condition_type='canny'):
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)
    # image = Image.open(image_path)
    width, height = image.size

    if condition_type == 'depth':  # The depth model requires a side length that is a multiple of 32
        new_width = (width + 31) // 32 * 32
        new_height = (height + 31) // 32 * 32
    else:
        new_width = (width + 15) // 16 * 16
        new_height = (height + 15) // 16 * 16

    resized_image = image.resize((new_width, new_height))
    return resized_image


class Model:

    def __init__(self):
        self.device = torch.device(
            "cuda:0")
        self.base_model_id = ""
        self.task_name = ""
        self.vq_model = self.load_vq()
        self.t5_model = self.load_t5()
        self.gpt_model_canny = self.load_gpt(condition_type='canny')
        self.gpt_model_depth = self.load_gpt(condition_type='depth')
        self.get_control_canny = CannyDetector()
        self.get_control_depth = MidasDetector('cuda')

    def to(self, device):
        self.gpt_model_canny.to('cuda')
        print(next(self.gpt_model_canny.adapter.parameters()).device)
        # print(self.gpt_model_canny.device)

    def load_vq(self):
        vq_model = VQ_models["VQ-16"](codebook_size=16384,
                                      codebook_embed_dim=8)
        vq_model.to('cuda')
        vq_model.eval()
        checkpoint = torch.load(f"checkpoints/vq_ds16_t2i.pt",
                                map_location="cpu")
        vq_model.load_state_dict(checkpoint["model"])
        del checkpoint
        print("image tokenizer is loaded")
        return vq_model

    def load_gpt(self, condition_type='canny'):
        gpt_ckpt = models[condition_type]
        precision = torch.bfloat16
        latent_size = 768 // 16
        gpt_model = GPT_models["GPT-XL"](
            block_size=latent_size**2,
            cls_token_num=120,
            model_type='t2i',
            condition_type=condition_type,
        ).to(device='cuda', dtype=precision)

        model_weight = load_file(gpt_ckpt)
        gpt_model.load_state_dict(model_weight, strict=False)
        gpt_model.eval()
        print("gpt model is loaded")
        return gpt_model

    def load_t5(self):
        precision = torch.bfloat16
        t5_model = T5Embedder(
            device="cuda",
            local_cache=False,
            cache_dir='checkpoints/flan-t5-xl',
            dir_or_name='flan-t5-xl',
            torch_dtype=precision,
            model_max_length=120,
        )
        return t5_model

    @torch.no_grad()
    @spaces.GPU(enable_queue=True)
    def process_canny(
        self,
        image: np.ndarray,
        prompt: str,
        cfg_scale: float,
        temperature: float,
        top_k: int,
        top_p: int,
        seed: int,
        low_threshold: int,
        high_threshold: int,
    ) -> list[PIL.Image.Image]:

        image = resize_image_to_16_multiple(image, 'canny')
        W, H = image.size
        print(W, H)
        condition_img = self.get_control_canny(np.array(image), low_threshold,
                                               high_threshold)
        condition_img = torch.from_numpy(condition_img[None, None,
                                                       ...]).repeat(
                                                           2, 3, 1, 1)
        condition_img = condition_img.to(self.device)
        condition_img = 2 * (condition_img / 255 - 0.5)
        prompts = [prompt] * 2
        caption_embs, emb_masks = self.t5_model.get_text_embeddings(prompts)

        print(f"processing left-padding...")
        new_emb_masks = torch.flip(emb_masks, dims=[-1])
        new_caption_embs = []
        for idx, (caption_emb,
                  emb_mask) in enumerate(zip(caption_embs, emb_masks)):
            valid_num = int(emb_mask.sum().item())
            print(f'  prompt {idx} token len: {valid_num}')
            new_caption_emb = torch.cat(
                [caption_emb[valid_num:], caption_emb[:valid_num]])
            new_caption_embs.append(new_caption_emb)
        new_caption_embs = torch.stack(new_caption_embs)
        c_indices = new_caption_embs * new_emb_masks[:, :, None]
        c_emb_masks = new_emb_masks
        qzshape = [len(c_indices), 8, H // 16, W // 16]
        t1 = time.time()
        print(caption_embs.device)
        index_sample = generate(
            self.gpt_model_canny,
            c_indices,
            (H // 16) * (W // 16),
            c_emb_masks,
            condition=condition_img,
            cfg_scale=cfg_scale,
            temperature=temperature,
            top_k=top_k,
            top_p=top_p,
            sample_logits=True,
        )
        sampling_time = time.time() - t1
        print(f"Full sampling takes about {sampling_time:.2f} seconds.")

        t2 = time.time()
        print(index_sample.shape)
        samples = self.vq_model.decode_code(
            index_sample, qzshape)  # output value is between [-1, 1]
        decoder_time = time.time() - t2
        print(f"decoder takes about {decoder_time:.2f} seconds.")

        samples = torch.cat((condition_img[0:1], samples), dim=0)
        samples = 255 * (samples * 0.5 + 0.5)
        samples = [image] + [
            Image.fromarray(
                sample.permute(1, 2, 0).cpu().detach().numpy().clip(
                    0, 255).astype(np.uint8)) for sample in samples
        ]
        del condition_img
        torch.cuda.empty_cache()
        return samples

    @torch.no_grad()
    @spaces.GPU(enable_queue=True)
    def process_depth(
        self,
        image: np.ndarray,
        prompt: str,
        cfg_scale: float,
        temperature: float,
        top_k: int,
        top_p: int,
        seed: int,
    ) -> list[PIL.Image.Image]:
        image = resize_image_to_16_multiple(image, 'depth')
        W, H = image.size
        print(W, H)
        image_tensor = torch.from_numpy(np.array(image)).to(self.device)
        condition_img = torch.from_numpy(
            self.get_control_depth(image_tensor)).unsqueeze(0)
        condition_img = condition_img.unsqueeze(0).repeat(2, 3, 1, 1)
        condition_img = condition_img.to(self.device)
        condition_img = 2 * (condition_img / 255 - 0.5)
        prompts = [prompt] * 2
        caption_embs, emb_masks = self.t5_model.get_text_embeddings(prompts)

        print(f"processing left-padding...")
        new_emb_masks = torch.flip(emb_masks, dims=[-1])
        new_caption_embs = []
        for idx, (caption_emb,
                  emb_mask) in enumerate(zip(caption_embs, emb_masks)):
            valid_num = int(emb_mask.sum().item())
            print(f'  prompt {idx} token len: {valid_num}')
            new_caption_emb = torch.cat(
                [caption_emb[valid_num:], caption_emb[:valid_num]])
            new_caption_embs.append(new_caption_emb)
        new_caption_embs = torch.stack(new_caption_embs)

        c_indices = new_caption_embs * new_emb_masks[:, :, None]
        c_emb_masks = new_emb_masks
        qzshape = [len(c_indices), 8, H // 16, W // 16]
        t1 = time.time()
        index_sample = generate(
            self.gpt_model_depth,
            c_indices,
            (H // 16) * (W // 16),
            c_emb_masks,
            condition=condition_img,
            cfg_scale=cfg_scale,
            temperature=temperature,
            top_k=top_k,
            top_p=top_p,
            sample_logits=True,
        )
        sampling_time = time.time() - t1
        print(f"Full sampling takes about {sampling_time:.2f} seconds.")

        t2 = time.time()
        print(index_sample.shape)
        samples = self.vq_model.decode_code(index_sample, qzshape)
        decoder_time = time.time() - t2
        print(f"decoder takes about {decoder_time:.2f} seconds.")
        condition_img = condition_img.cpu()
        samples = samples.cpu()
        samples = torch.cat((condition_img[0:1], samples), dim=0)
        samples = 255 * (samples * 0.5 + 0.5)
        samples = [image] + [
            Image.fromarray(
                sample.permute(1, 2, 0).numpy().clip(0, 255).astype(np.uint8))
            for sample in samples
        ]
        del image_tensor
        del condition_img
        torch.cuda.empty_cache()
        return samples