from deepmultilingualpunctuation import PunctuationModel import re import metrics def remove_filler_words(transcript): # preserve line brakes transcript_hash = " # ".join(transcript.strip().splitlines()) # preprocess the text by removing filler words # Define a list of filler words to remove filler_words = ["um", "uh", "hmm", "ha", "er", "ah", "yeah"] words = transcript_hash.split() clean_words = [word for word in words if word.lower() not in filler_words] input_text_clean = ' '.join(clean_words) # restore the line brakes input_text= input_text_clean.replace(' # ','\n') return input_text # Define a regular expression pattern that matches any filler word surrounded by whitespace or punctuation #pattern = r"(?<=\s|\b)(" + "|".join(fillers) + r")(?=\s|\b)" # Use re.sub to replace the filler words with empty strings #clean_input_text = re.sub(pattern, "", input_text) def predict(brakes, transcript): input_text = remove_filler_words(transcript) # Do the punctuation restauration model = PunctuationModel() output_text = model.restore_punctuation(input_text) # if any of the line brake methods are implemented, # return the text as a single line pcnt_file_cr = output_text if 'textlines' in brakes: # preserve line brakes srt_file_hash = '# '.join(input_text.strip().splitlines()) #srt_file_sub=re.sub('\s*\n\s*','# ',srt_file_strip) srt_file_array=srt_file_hash.split() pcnt_file_array=output_text.split() # goal: restore the break points i.e. the same number of lines as the srt file # this is necessary, because each line in the srt file corresponds to a frame from the video if len(srt_file_array)!=len(pcnt_file_array): return "AssertError: The length of the transcript and the punctuated file should be the same: ",len(srt_file_array),len(pcnt_file_array) pcnt_file_array_hash = [] for idx, item in enumerate(srt_file_array): if item.endswith('#'): pcnt_file_array_hash.append(pcnt_file_array[idx]+'#') else: pcnt_file_array_hash.append(pcnt_file_array[idx]) # assemble the array back to a string pcnt_file_cr=' '.join(pcnt_file_array_hash).replace('#','\n') elif 'sentences' in brakes: split_text = output_text.split('. ') pcnt_file_cr = '.\n'.join(split_text) regex1 = r"\bi\b" regex2 = r"(?<=[.?!;])\s*\w" regex3 = r"^\w" pcnt_file_cr_cap = re.sub(regex3, lambda x: x.group().upper(), re.sub(regex2, lambda x: x.group().upper(), re.sub(regex1, "I", pcnt_file_cr))) metrics.load_nltk() n_tokens= metrics.num_tokens(pcnt_file_cr_cap) n_sents = metrics.num_sentences(pcnt_file_cr_cap) n_words = metrics.num_words(pcnt_file_cr_cap) n_chars = metrics.num_chars(pcnt_file_cr_cap) return pcnt_file_cr_cap, n_words, n_sents, n_chars, n_tokens