lit / quickstart_sst_demo.py
windmaple's picture
Update quickstart_sst_demo.py
4481fa4
# Lint as: python3
r"""Example demo loading a handful of GLUE models.
For a quick-start set of models, run:
python -m lit_nlp.examples.glue_demo \
--quickstart --port=5432
To run with the 'normal' defaults, including full-size BERT models:
python -m lit_nlp.examples.glue_demo --port=5432
Then navigate to localhost:5432 to access the demo UI.
"""
import sys
from absl import app
from absl import flags
from absl import logging
from lit_nlp import dev_server
from lit_nlp import server_flags
from lit_nlp.examples.datasets import glue
from lit_nlp.examples.models import glue_models
import transformers # for path caching
# NOTE: additional flags defined in server_flags.py
FLAGS = flags.FLAGS
FLAGS.set_default("development_demo", True)
flags.DEFINE_bool(
"quickstart", False,
"Quick-start mode, loads smaller models and a subset of the full data.")
flags.DEFINE_list(
"models", [
"sst2-tiny:sst2:https://storage.googleapis.com/what-if-tool-resources/lit-models/sst2_tiny.tar.gz",
"sst2-base:sst2:https://storage.googleapis.com/what-if-tool-resources/lit-models/sst2_base.tar.gz",
"stsb:stsb:https://storage.googleapis.com/what-if-tool-resources/lit-models/stsb_base.tar.gz",
"mnli:mnli:https://storage.googleapis.com/what-if-tool-resources/lit-models/mnli_base.tar.gz",
], "List of models to load, as <name>:<task>:<path>. "
"See MODELS_BY_TASK for available tasks. Path should be the output of "
"saving a transformers model, e.g. model.save_pretrained(path) and "
"tokenizer.save_pretrained(path). Remote .tar.gz files will be downloaded "
"and cached locally.")
flags.DEFINE_integer(
"max_examples", None, "Maximum number of examples to load into LIT. "
"Note: MNLI eval set is 10k examples, so will take a while to run and may "
"be slow on older machines. Set --max_examples=200 for a quick start.")
MODELS_BY_TASK = {
"sst2": glue_models.SST2Model,
"stsb": glue_models.STSBModel,
"mnli": glue_models.MNLIModel,
}
# Pre-specified set of small models, which will load and run much faster.
QUICK_START_MODELS = (
"sst2-tiny:sst2:https://storage.googleapis.com/what-if-tool-resources/lit-models/sst2_tiny.tar.gz",
"sst2-small:sst2:https://storage.googleapis.com/what-if-tool-resources/lit-models/sst2_small.tar.gz",
"stsb-tiny:stsb:https://storage.googleapis.com/what-if-tool-resources/lit-models/stsb_tiny.tar.gz",
"mnli-small:mnli:https://storage.googleapis.com/what-if-tool-resources/lit-models/mnli_small.tar.gz",
)
def get_wsgi_app():
"""Return WSGI app for container-hosted demos."""
FLAGS.set_default("server_type", "external")
FLAGS.set_default("demo_mode", True)
# Parse flags without calling app.run(main), to avoid conflict with
# gunicorn command line flags.
unused = flags.FLAGS(sys.argv, known_only=True)
return main(unused)
def main(_):
# Quick-start mode.
if FLAGS.quickstart:
FLAGS.models = QUICK_START_MODELS # smaller, faster models
if FLAGS.max_examples is None or FLAGS.max_examples > 1000:
FLAGS.max_examples = 1000 # truncate larger eval sets
logging.info("Quick-start mode; overriding --models and --max_examples.")
models = {}
datasets = {}
tasks_to_load = set()
for model_string in FLAGS.models:
# Only split on the first two ':', because path may be a URL
# containing 'https://'
name, task, path = model_string.split(":", 2)
logging.info("Loading model '%s' for task '%s' from '%s'", name, task, path)
# Normally path is a directory; if it's an archive file, download and
# extract to the transformers cache.
if path.endswith(".tar.gz"):
path = transformers.file_utils.cached_path(
path, extract_compressed_file=True)
# Load the model from disk.
models[name] = MODELS_BY_TASK[task](path)
tasks_to_load.add(task)
##
# Load datasets for each task that we have a model for
if "sst2" in tasks_to_load:
logging.info("Loading data for SST-2 task.")
datasets["sst_dev"] = glue.SST2Data("validation")
if "stsb" in tasks_to_load:
logging.info("Loading data for STS-B task.")
datasets["stsb_dev"] = glue.STSBData("validation")
if "mnli" in tasks_to_load:
logging.info("Loading data for MultiNLI task.")
datasets["mnli_dev"] = glue.MNLIData("validation_matched")
datasets["mnli_dev_mm"] = glue.MNLIData("validation_mismatched")
# Truncate datasets if --max_examples is set.
for name in datasets:
logging.info("Dataset: '%s' with %d examples", name, len(datasets[name]))
datasets[name] = datasets[name].slice[:FLAGS.max_examples]
logging.info(" truncated to %d examples", len(datasets[name]))
# Start the LIT server. See server_flags.py for server options.
lit_demo = dev_server.Server(models, datasets, **server_flags.get_flags())
return lit_demo.serve()
if __name__ == "__main__":
app.run(main)