Spaces:
Running
Running
File size: 21,069 Bytes
56c77d7 fe88c98 56c77d7 fe88c98 56c77d7 fe88c98 56c77d7 fe88c98 56c77d7 588ac2b 56c77d7 7dbd6ec fe88c98 7dbd6ec 588ac2b 56c77d7 588ac2b 7dbd6ec fe88c98 588ac2b 56c77d7 fe88c98 7dbd6ec fe88c98 7dbd6ec fe88c98 7dbd6ec 56c77d7 588ac2b 56c77d7 588ac2b 56c77d7 588ac2b 56c77d7 588ac2b 56c77d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 |
import os
import json
import gradio as gr
import shutil
import subprocess
import requests
import tarfile
from pathlib import Path
import soundfile as sf
import sherpa_onnx
from deep_translator import GoogleTranslator
import numpy as np
from iso639 import Lang
import pycountry
# Load model JSON
MODEL_JSON_URL = "https://github.com/willwade/tts-wrapper/blob/main/tts_wrapper/engines/sherpaonnx/merged_models.json"
MODEL_JSON_PATH = "./models.json"
# Load models
if not os.path.exists(MODEL_JSON_PATH):
response = requests.get(MODEL_JSON_URL.replace("/blob/", "/raw/"))
with open(MODEL_JSON_PATH, "w") as f:
f.write(response.text)
with open(MODEL_JSON_PATH, "r") as f:
models = json.load(f)
def get_model_display_info(model_info):
"""Create a display string for a model."""
# Get language info
lang_info = model_info.get('language', [{}])[0]
lang_name = lang_info.get('language_name', lang_info.get('Language Name', 'Unknown'))
lang_code = lang_info.get('lang_code', lang_info.get('Iso Code', 'Unknown'))
# Get model info
voice_name = model_info.get('name', model_info.get('id', 'Unknown'))
developer = model_info.get('developer', '')
quality = model_info.get('quality', 'MMS' if 'mms' in voice_name.lower() else '')
# Create display name
model_display = f"{voice_name} ({developer}"
if quality:
model_display += f" - {quality}"
model_display += ")"
# Combine language and model info
return f"{lang_name} ({lang_code}) | {model_display}"
# Group models by language
models_by_lang = {}
for model_id, model_info in models.items():
# Get language info from the first language in the list
lang_info = model_info.get('language', [{}])[0]
lang_name = lang_info.get('language_name', lang_info.get('Language Name', 'Unknown'))
lang_code = lang_info.get('lang_code', lang_info.get('Iso Code', 'Unknown'))
group_key = f"{lang_name} ({lang_code})"
if group_key not in models_by_lang:
models_by_lang[group_key] = []
# Add model to language group
models_by_lang[group_key].append((get_model_display_info(model_info), model_id))
# Create dropdown choices with model IDs as values
dropdown_choices = []
models_by_display = {} # Map display names to model IDs
for lang, model_list in sorted(models_by_lang.items()):
# Add all models in this language group
for display_name, model_id in sorted(model_list):
dropdown_choices.append(display_name)
models_by_display[display_name] = model_id
def get_language_code(model_info):
"""Get the language code."""
if not model_info.get("language"):
return None
lang_info = model_info["language"][0]
# Try both key formats for language code
lang_code = lang_info.get("lang_code", lang_info.get("Iso Code", "")).lower()
return lang_code
# Special cases for codes not in ISO standard
SPECIAL_CODES = {
"cmn": "zh", # Mandarin Chinese
"yue": "zh", # Cantonese
"pi": "el", # Pali (using Greek for this model)
"guj": "gu", # Gujarati
}
def get_translate_code(iso_code):
"""Convert ISO code to Google Translate code."""
if not iso_code:
return None
# Remove any script or dialect specifiers
base_code = iso_code.split('-')[0].lower()
# Check special cases first
if base_code in SPECIAL_CODES:
return SPECIAL_CODES[base_code]
try:
# Try to get the ISO 639-1 (2-letter) code
lang = Lang(base_code)
return lang.pt1
except:
# If that fails, try to find a matching language in pycountry
try:
lang = pycountry.languages.get(alpha_3=base_code)
if lang and hasattr(lang, 'alpha_2'):
return lang.alpha_2
except:
pass
# If all else fails, try to use the original code
if len(base_code) == 2:
return base_code
return None
def translate_text(input_text, source_lang="en", target_lang="en"):
"""Translate text using Google Translator."""
try:
# If source and target are the same, or if target is English, return as is
if source_lang == target_lang or target_lang == "en":
return input_text
first_error = None
# Try with original language code
try:
translated = GoogleTranslator(source=source_lang, target=target_lang).translate(input_text)
return translated
except Exception as e:
first_error = e
print(f"First translation attempt failed: {str(e)}")
# Try with 'auto' as source language
try:
translated = GoogleTranslator(source='auto', target=target_lang).translate(input_text)
return translated
except Exception as e:
print(f"Second translation attempt failed: {str(e)}")
if first_error:
raise first_error
raise e
except Exception as e:
print(f"Translation error: {str(e)} for target language: {target_lang}")
print(f"Attempted to use language code: {target_lang}")
return input_text
def detect_language(text):
"""Detect the language of the input text using Google Translator."""
try:
return GoogleTranslator().detect(text).lower()
except:
return "en" # Default to English if detection fails
def download_and_extract_model(url, destination):
"""Download and extract the model files."""
print(f"Downloading from URL: {url}")
print(f"Destination: {destination}")
# Convert Hugging Face URL format if needed
if "huggingface.co" in url:
# Replace /tree/main/ with /resolve/main/ for direct file download
base_url = url.replace("/tree/main/", "/resolve/main/")
model_id = base_url.split("/")[-1]
# Check if this is an MMS model
is_mms_model = "mms-tts-multilingual-models-onnx" in url
if is_mms_model:
# MMS models have both model.onnx and tokens.txt
model_url = f"{base_url}/model.onnx"
tokens_url = f"{base_url}/tokens.txt"
# Download model.onnx
print("Downloading model.onnx...")
model_path = os.path.join(destination, "model.onnx")
response = requests.get(model_url, stream=True)
if response.status_code != 200:
raise Exception(f"Failed to download model from {model_url}. Status code: {response.status_code}")
total_size = int(response.headers.get('content-length', 0))
block_size = 8192
downloaded = 0
print(f"Total size: {total_size / (1024*1024):.1f} MB")
with open(model_path, "wb") as f:
for chunk in response.iter_content(chunk_size=block_size):
if chunk:
f.write(chunk)
downloaded += len(chunk)
if total_size > 0:
percent = int((downloaded / total_size) * 100)
if percent % 10 == 0:
print(f" {percent}%", end="", flush=True)
print("\nModel download complete")
# Download tokens.txt
print("Downloading tokens.txt...")
tokens_path = os.path.join(destination, "tokens.txt")
response = requests.get(tokens_url, stream=True)
if response.status_code != 200:
raise Exception(f"Failed to download tokens from {tokens_url}. Status code: {response.status_code}")
with open(tokens_path, "wb") as f:
f.write(response.content)
print("Tokens download complete")
return
else:
# Other models are stored as tar.bz2 files
url = f"{base_url}.tar.bz2"
# Try the URL
response = requests.get(url, stream=True)
if response.status_code != 200:
raise Exception(f"Failed to download model from {url}. Status code: {response.status_code}")
# Check if this is a Git LFS file pointer
content_start = response.content[:100].decode('utf-8', errors='ignore')
if content_start.startswith('version https://git-lfs.github.com/spec/v1'):
raise Exception(f"Received Git LFS pointer instead of file content from {url}")
# Create model directory if it doesn't exist
os.makedirs(destination, exist_ok=True)
# For non-MMS models, handle tar.bz2 files
tar_path = os.path.join(destination, "model.tar.bz2")
# Download the file
print("Downloading model archive...")
response = requests.get(url, stream=True)
total_size = int(response.headers.get('content-length', 0))
block_size = 8192
downloaded = 0
print(f"Total size: {total_size / (1024*1024):.1f} MB")
with open(tar_path, "wb") as f:
for chunk in response.iter_content(chunk_size=block_size):
if chunk:
f.write(chunk)
downloaded += len(chunk)
if total_size > 0:
percent = int((downloaded / total_size) * 100)
if percent % 10 == 0:
print(f" {percent}%", end="", flush=True)
print("\nDownload complete")
# Extract the tar.bz2 file
print(f"Extracting {tar_path} to {destination}")
try:
with tarfile.open(tar_path, "r:bz2") as tar:
tar.extractall(path=destination)
os.remove(tar_path)
print("Extraction complete")
except Exception as e:
print(f"Error during extraction: {str(e)}")
raise
print("Contents of destination directory:")
for root, dirs, files in os.walk(destination):
print(f"\nDirectory: {root}")
if dirs:
print(" Subdirectories:", dirs)
if files:
print(" Files:", files)
def find_model_files(model_dir):
"""Find model files in the given directory and its subdirectories."""
model_files = {}
# Check if this is an MMS model
is_mms = 'mms' in os.path.basename(model_dir).lower()
for root, _, files in os.walk(model_dir):
for file in files:
file_path = os.path.join(root, file)
# Model file
if file.endswith('.onnx'):
model_files['model'] = file_path
# Tokens file
elif file == 'tokens.txt':
model_files['tokens'] = file_path
# Lexicon file (only for non-MMS models)
elif file == 'lexicon.txt' and not is_mms:
model_files['lexicon'] = file_path
# Create empty lexicon file if needed (only for non-MMS models)
if not is_mms and 'model' in model_files and 'lexicon' not in model_files:
model_dir = os.path.dirname(model_files['model'])
lexicon_path = os.path.join(model_dir, 'lexicon.txt')
with open(lexicon_path, 'w', encoding='utf-8') as f:
pass # Create empty file
model_files['lexicon'] = lexicon_path
return model_files if 'model' in model_files else {}
def generate_audio(text, model_info):
"""Generate audio from text using the specified model."""
try:
model_dir = os.path.join("./models", model_info['id'])
print(f"\nLooking for model in: {model_dir}")
# Download model if it doesn't exist
if not os.path.exists(model_dir):
print(f"Model directory doesn't exist, downloading {model_info['id']}...")
os.makedirs(model_dir, exist_ok=True)
download_and_extract_model(model_info['url'], model_dir)
print(f"Contents of {model_dir}:")
for item in os.listdir(model_dir):
item_path = os.path.join(model_dir, item)
if os.path.isdir(item_path):
print(f" Directory: {item}")
print(f" Contents: {os.listdir(item_path)}")
else:
print(f" File: {item}")
# Find and validate model files
model_files = find_model_files(model_dir)
if not model_files or 'model' not in model_files:
raise ValueError(f"Could not find required model files in {model_dir}")
print("\nFound model files:")
print(f"Model: {model_files['model']}")
print(f"Tokens: {model_files.get('tokens', 'Not found')}")
print(f"Lexicon: {model_files.get('lexicon', 'Not required for MMS')}\n")
# Check if this is an MMS model
is_mms = 'mms' in os.path.basename(model_dir).lower()
# Create configuration based on model type
if is_mms:
if 'tokens' not in model_files or not os.path.exists(model_files['tokens']):
raise ValueError("tokens.txt is required for MMS models")
# MMS models use tokens.txt and no lexicon
vits_config = sherpa_onnx.OfflineTtsVitsModelConfig(
model_files['model'], # model
'', # lexicon
model_files['tokens'], # tokens
'', # data_dir
'', # dict_dir
0.667, # noise_scale
0.8, # noise_scale_w
1.0 # length_scale
)
else:
# Non-MMS models use lexicon.txt
if 'tokens' not in model_files or not os.path.exists(model_files['tokens']):
raise ValueError("tokens.txt is required for VITS models")
# Set data dir if it exists
espeak_data = os.path.join(os.path.dirname(model_files['model']), 'espeak-ng-data')
data_dir = espeak_data if os.path.exists(espeak_data) else ''
# Get lexicon path if it exists
lexicon = model_files.get('lexicon', '') if os.path.exists(model_files.get('lexicon', '')) else ''
# Create VITS model config
vits_config = sherpa_onnx.OfflineTtsVitsModelConfig(
model_files['model'], # model
lexicon, # lexicon
model_files['tokens'], # tokens
data_dir, # data_dir
'', # dict_dir
0.667, # noise_scale
0.8, # noise_scale_w
1.0 # length_scale
)
# Create the model config with VITS
model_config = sherpa_onnx.OfflineTtsModelConfig()
model_config.vits = vits_config
# Create TTS configuration
config = sherpa_onnx.OfflineTtsConfig(
model=model_config,
max_num_sentences=2
)
# Initialize TTS engine
tts = sherpa_onnx.OfflineTts(config)
# Generate audio
audio_data = tts.generate(text)
# Ensure we have valid audio data
if audio_data is None or len(audio_data.samples) == 0:
raise ValueError("Failed to generate audio - no data generated")
# Convert samples list to numpy array and normalize
audio_array = np.array(audio_data.samples, dtype=np.float32)
if np.any(audio_array): # Check if array is not all zeros
audio_array = audio_array / np.abs(audio_array).max()
else:
raise ValueError("Generated audio is empty")
# Return in Gradio's expected format (numpy array, sample rate)
return (audio_array, audio_data.sample_rate)
except Exception as e:
error_msg = str(e)
# Check for OOV or token conversion errors
if "out of vocabulary" in error_msg.lower() or "token" in error_msg.lower():
error_msg = f"Text contains unsupported characters: {error_msg}"
print(f"Error generating audio: {error_msg}")
print(f"Error in TTS generation: {error_msg}")
raise
def tts_interface(selected_model, text, translate_enabled, status_output):
try:
if not text.strip():
return None, "Please enter some text"
# Get model ID from the display name mapping
model_id = models_by_display.get(selected_model)
if not model_id or model_id not in models:
return None, "Please select a model"
model_info = models[model_id]
# Get the language code and check if translation is needed
lang_code = get_language_code(model_info)
translate_code = get_translate_code(lang_code)
# Store original text for status message
original_text = text
translated_text = None
was_translated = False
# Only translate if translation is enabled and needed
if translate_enabled and translate_code and translate_code != "en":
if not translate_code:
return None, f"Cannot determine translation target language from code: {lang_code}"
print(f"Translating to {translate_code}")
translated_text = translate_text(text, "en", translate_code)
if translated_text != text: # Only mark as translated if text actually changed
was_translated = True
text = translated_text
try:
# Update status with language info
lang_info = model_info.get('language', [{}])[0]
lang_name = lang_info.get('language_name', 'Unknown')
voice_name = model_info.get('name', model_id)
status = f"Generating speech using {voice_name} ({lang_name})..."
# Generate audio
audio_data, sample_rate = generate_audio(text, model_info)
# Include translation info in final status if text was actually translated
final_status = f"Generated speech using {voice_name} ({lang_name})"
if was_translated:
final_status += f"\nTranslated: '{original_text}' → '{translated_text}'"
else:
final_status += f"\nText: '{text}'"
return (sample_rate, audio_data), final_status
except ValueError as e:
# Handle known errors with user-friendly messages
error_msg = str(e)
if "cannot process some words" in error_msg.lower():
return None, error_msg
return None, f"Error: {error_msg}"
except Exception as e:
print(f"Error in TTS generation: {str(e)}")
error_msg = str(e)
return None, f"Error: {error_msg}"
# Gradio Interface
with gr.Blocks() as app:
gr.Markdown("# Sherpa-ONNX TTS Demo")
with gr.Row():
with gr.Column():
model_dropdown = gr.Dropdown(
choices=dropdown_choices,
label="Select Model",
value=dropdown_choices[0] if dropdown_choices else None
)
text_input = gr.Textbox(
label="Text to speak",
placeholder="Enter text here...",
lines=3
)
translate_checkbox = gr.Checkbox(
label="Translate to model language",
value=False
)
with gr.Row():
generate_btn = gr.Button("Generate Audio")
stop_btn = gr.Button("Stop")
with gr.Column():
audio_output = gr.Audio(
label="Generated Audio",
type="numpy"
)
status_text = gr.Textbox(
label="Status",
interactive=False
)
def on_model_change(model_name):
# Get model info
model_id = models_by_display.get(model_name)
if not model_id or model_id not in models:
return False
model_info = models[model_id]
lang_code = get_language_code(model_info)
# Auto-check translation for non-English models
should_translate = lang_code and lang_code.lower() != "en"
return should_translate
# Update translation checkbox when model changes
model_dropdown.change(
fn=on_model_change,
inputs=[model_dropdown],
outputs=[translate_checkbox]
)
# Set up event handlers
gen_event = generate_btn.click(
fn=tts_interface,
inputs=[model_dropdown, text_input, translate_checkbox, status_text],
outputs=[audio_output, status_text]
)
stop_btn.click(
fn=None,
cancels=gen_event,
queue=False
)
app.launch()
|