import os import sys import fire import gradio as gr import torch import transformers from peft import PeftModel from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer, AutoModel, AutoTokenizer, AutoModelForCausalLM,AutoConfig from utils.callbacks import Iteratorize, Stream from utils.prompter import Prompter # if torch.cuda.is_available(): # device = "cuda" # else: # device = "cpu" # try: # if torch.backends.mps.is_available(): # device = "mps" # except: # pass device = "xpu" def main( load_8bit: bool = False, base_model: str = "ziqingyang/chinese-alpaca-2-7b", lora_weights: str = "entity303/lawgpt-lora-7b-v2", prompt_template: str = "", # The prompt template to use, will default to alpaca. server_name: str = "0.0.0.0", # Allows to listen on all interfaces by providing '0. share_gradio: bool = False, ): base_model = base_model or os.environ.get("BASE_MODEL", "") assert ( base_model ), "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'" prompter = Prompter(prompt_template) tokenizer = LlamaTokenizer.from_pretrained(base_model) prompter = Prompter(prompt_template) tokenizer = LlamaTokenizer.from_pretrained(base_model) config = AutoConfig.from_pretrained(base_model) model = AutoModelForCausalLM.from_pretrained( base_model, config=config, load_in_8bit=load_8bit, torch_dtype=torch.float16, device_map="auto", ) try: print(f"Using lora {lora_weights}") model = PeftModel.from_pretrained( model, lora_weights, torch_dtype=torch.float16, ) except: print("*"*50, "\n Attention! No Lora Weights \n", "*"*50) # unwind broken decapoda-research config model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk model.config.bos_token_id = 1 model.config.eos_token_id = 2 # if not load_8bit: # model.half() # seems to fix bugs for some users. model.eval() if torch.__version__ >= "2" and sys.platform != "win32": model = torch.compile(model) def evaluate( instruction, # input=None, temperature=0.1, top_p=0.75, top_k=40, num_beams=4, max_new_tokens=128, stream_output=False, **kwargs, ): input=None prompt = prompter.generate_prompt(instruction, input) inputs = tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].to(device) generation_config = GenerationConfig( temperature=temperature, top_p=top_p, top_k=top_k, num_beams=num_beams, **kwargs, ) generate_params = { "input_ids": input_ids, "generation_config": generation_config, "return_dict_in_generate": True, "output_scores": True, "max_new_tokens": max_new_tokens, } if stream_output: # Stream the reply 1 token at a time. # This is based on the trick of using 'stopping_criteria' to create an iterator, # from https://github.com/oobabooga/text-generation-webui/blob/ad37f396fc8bcbab90e11ecf17c56c97bfbd4a9c/modules/text_generation.py#L216-L243. def generate_with_callback(callback=None, **kwargs): kwargs.setdefault( "stopping_criteria", transformers.StoppingCriteriaList() ) kwargs["stopping_criteria"].append( Stream(callback_func=callback) ) with torch.no_grad(): model.generate(**kwargs) def generate_with_streaming(**kwargs): return Iteratorize( generate_with_callback, kwargs, callback=None ) with generate_with_streaming(**generate_params) as generator: for output in generator: # new_tokens = len(output) - len(input_ids[0]) decoded_output = tokenizer.decode(output) if output[-1] in [tokenizer.eos_token_id]: break yield prompter.get_response(decoded_output) print(decoded_output) return # early return for stream_output # Without streaming with torch.no_grad(): generation_output = model.generate( input_ids=input_ids, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=max_new_tokens, ) s = generation_output.sequences[0] output = tokenizer.decode(s) print(output) yield prompter.get_response(output) gr.Interface( fn=evaluate, inputs=[ gr.components.Textbox( lines=2, label="Instruction", placeholder="此处输入法律相关问题", ), # gr.components.Textbox(lines=2, label="Input", placeholder="none"), gr.components.Slider( minimum=0, maximum=1, value=0.1, label="Temperature" ), gr.components.Slider( minimum=0, maximum=1, value=0.75, label="Top p" ), gr.components.Slider( minimum=0, maximum=100, step=1, value=40, label="Top k" ), gr.components.Slider( minimum=1, maximum=4, step=1, value=1, label="Beams" ), gr.components.Slider( minimum=1, maximum=2000, step=1, value=256, label="Max tokens" ), gr.components.Checkbox(label="Stream output", value=True), ], outputs=[ gr.inputs.Textbox( lines=8, label="Output", ) ], title="🦙🌲 LaWGPT", description="", ).queue().launch(server_name="0.0.0.0", share=share_gradio) if __name__ == "__main__": fire.Fire(main)