Law_llama / webui.py
williamyangwentao's picture
Upload folder using huggingface_hub
66b5a4a
import os
import sys
import fire
import gradio as gr
import torch
import transformers
from peft import PeftModel
from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer, AutoModel, AutoTokenizer, AutoModelForCausalLM,AutoConfig
from utils.callbacks import Iteratorize, Stream
from utils.prompter import Prompter
# if torch.cuda.is_available():
# device = "cuda"
# else:
# device = "cpu"
# try:
# if torch.backends.mps.is_available():
# device = "mps"
# except:
# pass
device = "xpu"
def main(
load_8bit: bool = False,
base_model: str = "ziqingyang/chinese-alpaca-2-7b",
lora_weights: str = "entity303/lawgpt-lora-7b-v2",
prompt_template: str = "", # The prompt template to use, will default to alpaca.
server_name: str = "0.0.0.0", # Allows to listen on all interfaces by providing '0.
share_gradio: bool = False,
):
base_model = base_model or os.environ.get("BASE_MODEL", "")
assert (
base_model
), "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'"
prompter = Prompter(prompt_template)
tokenizer = LlamaTokenizer.from_pretrained(base_model)
prompter = Prompter(prompt_template)
tokenizer = LlamaTokenizer.from_pretrained(base_model)
config = AutoConfig.from_pretrained(base_model)
model = AutoModelForCausalLM.from_pretrained(
base_model,
config=config,
load_in_8bit=load_8bit,
torch_dtype=torch.float16,
device_map="auto",
)
try:
print(f"Using lora {lora_weights}")
model = PeftModel.from_pretrained(
model,
lora_weights,
torch_dtype=torch.float16,
)
except:
print("*"*50, "\n Attention! No Lora Weights \n", "*"*50)
# unwind broken decapoda-research config
model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk
model.config.bos_token_id = 1
model.config.eos_token_id = 2
# if not load_8bit:
# model.half() # seems to fix bugs for some users.
model.eval()
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
def evaluate(
instruction,
# input=None,
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=4,
max_new_tokens=128,
stream_output=False,
**kwargs,
):
input=None
prompt = prompter.generate_prompt(instruction, input)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
**kwargs,
)
generate_params = {
"input_ids": input_ids,
"generation_config": generation_config,
"return_dict_in_generate": True,
"output_scores": True,
"max_new_tokens": max_new_tokens,
}
if stream_output:
# Stream the reply 1 token at a time.
# This is based on the trick of using 'stopping_criteria' to create an iterator,
# from https://github.com/oobabooga/text-generation-webui/blob/ad37f396fc8bcbab90e11ecf17c56c97bfbd4a9c/modules/text_generation.py#L216-L243.
def generate_with_callback(callback=None, **kwargs):
kwargs.setdefault(
"stopping_criteria", transformers.StoppingCriteriaList()
)
kwargs["stopping_criteria"].append(
Stream(callback_func=callback)
)
with torch.no_grad():
model.generate(**kwargs)
def generate_with_streaming(**kwargs):
return Iteratorize(
generate_with_callback, kwargs, callback=None
)
with generate_with_streaming(**generate_params) as generator:
for output in generator:
# new_tokens = len(output) - len(input_ids[0])
decoded_output = tokenizer.decode(output)
if output[-1] in [tokenizer.eos_token_id]:
break
yield prompter.get_response(decoded_output)
print(decoded_output)
return # early return for stream_output
# Without streaming
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)
print(output)
yield prompter.get_response(output)
gr.Interface(
fn=evaluate,
inputs=[
gr.components.Textbox(
lines=2,
label="Instruction",
placeholder="ๆญคๅค„่พ“ๅ…ฅๆณ•ๅพ‹็›ธๅ…ณ้—ฎ้ข˜",
),
# gr.components.Textbox(lines=2, label="Input", placeholder="none"),
gr.components.Slider(
minimum=0, maximum=1, value=0.1, label="Temperature"
),
gr.components.Slider(
minimum=0, maximum=1, value=0.75, label="Top p"
),
gr.components.Slider(
minimum=0, maximum=100, step=1, value=40, label="Top k"
),
gr.components.Slider(
minimum=1, maximum=4, step=1, value=1, label="Beams"
),
gr.components.Slider(
minimum=1, maximum=2000, step=1, value=256, label="Max tokens"
),
gr.components.Checkbox(label="Stream output", value=True),
],
outputs=[
gr.inputs.Textbox(
lines=8,
label="Output",
)
],
title="๐Ÿฆ™๐ŸŒฒ LaWGPT",
description="",
).queue().launch(server_name="0.0.0.0", share=share_gradio)
if __name__ == "__main__":
fire.Fire(main)