Update app.py
Browse files
app.py
CHANGED
@@ -9,41 +9,64 @@ from espnet2.bin.tts_inference import Text2Speech
|
|
9 |
from espnet2.utils.types import str_or_none
|
10 |
|
11 |
|
12 |
-
def load_model(model_tag, vocoder_tag):
|
13 |
-
|
14 |
|
15 |
-
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
|
45 |
-
gos_text2speech = load_model('https://huggingface.co/wietsedv/tacotron2-gronings/resolve/main/tts_ljspeech_finetune_tacotron2.v5_train.loss.ave.zip', 'wietsedv/parallelwavegan-gronings')
|
46 |
-
nld_text2speech = load_model('https://huggingface.co/wietsedv/tacotron2-dutch/resolve/main/tts_ljspeech_finetune_tacotron2.v5_train.loss.ave.zip', 'wietsedv/parallelwavegan-dutch')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
#eng_text2speech = Text2Speech.from_pretrained(
|
48 |
# model_tag="kan-bayashi/ljspeech_tacotron2",
|
49 |
# vocoder_tag="parallel_wavegan/ljspeech_parallel_wavegan.v3",
|
|
|
9 |
from espnet2.utils.types import str_or_none
|
10 |
|
11 |
|
12 |
+
# def load_model(model_tag, vocoder_tag):
|
13 |
+
# from espnet_model_zoo.downloader import ModelDownloader
|
14 |
|
15 |
+
# kwargs = {}
|
16 |
|
17 |
+
# # Model
|
18 |
+
# d = ModelDownloader()
|
19 |
+
# kwargs = d.download_and_unpack(model_tag)
|
20 |
|
21 |
+
# # Vocoder
|
22 |
+
# download_dir = Path(os.path.expanduser("~/.cache/parallel_wavegan"))
|
23 |
+
# vocoder_dir = download_dir / vocoder_tag
|
24 |
+
# os.makedirs(vocoder_dir, exist_ok=True)
|
25 |
|
26 |
+
# kwargs["vocoder_config"] = vocoder_dir / "config.yml"
|
27 |
+
# if not kwargs["vocoder_config"].exists():
|
28 |
+
# urllib.request.urlretrieve(f"https://huggingface.co/{vocoder_tag}/resolve/main/config.yml", kwargs["vocoder_config"])
|
29 |
|
30 |
+
# kwargs["vocoder_file"] = vocoder_dir / "checkpoint-50000steps.pkl"
|
31 |
+
# if not kwargs["vocoder_file"].exists():
|
32 |
+
# urllib.request.urlretrieve(f"https://huggingface.co/{vocoder_tag}/resolve/main/checkpoint-50000steps.pkl", kwargs["vocoder_file"])
|
33 |
|
34 |
+
# return Text2Speech(
|
35 |
+
# **kwargs,
|
36 |
+
# device="cpu",
|
37 |
+
# threshold=0.5,
|
38 |
+
# minlenratio=0.0,
|
39 |
+
# maxlenratio=10.0,
|
40 |
+
# use_att_constraint=True,
|
41 |
+
# backward_window=1,
|
42 |
+
# forward_window=4,
|
43 |
+
# )
|
44 |
|
45 |
+
# gos_text2speech = load_model('https://huggingface.co/wietsedv/tacotron2-gronings/resolve/main/tts_ljspeech_finetune_tacotron2.v5_train.loss.ave.zip', 'wietsedv/parallelwavegan-gronings')
|
46 |
+
# nld_text2speech = load_model('https://huggingface.co/wietsedv/tacotron2-dutch/resolve/main/tts_ljspeech_finetune_tacotron2.v5_train.loss.ave.zip', 'wietsedv/parallelwavegan-dutch')
|
47 |
+
|
48 |
+
gos_text2speech = Text2Speech.from_pretrained(
|
49 |
+
model_tag="https://huggingface.co/wietsedv/tacotron2-gronings/resolve/main/tts_ljspeech_finetune_tacotron2.v5_train.loss.ave.zip",
|
50 |
+
vocoder_tag="parallel_wavegan/ljspeech_parallel_wavegan.v3",
|
51 |
+
device="cpu",
|
52 |
+
threshold=0.5,
|
53 |
+
minlenratio=0.0,
|
54 |
+
maxlenratio=10.0,
|
55 |
+
use_att_constraint=True,
|
56 |
+
backward_window=1,
|
57 |
+
forward_window=4,
|
58 |
+
)
|
59 |
+
nld_text2speech = Text2Speech.from_pretrained(
|
60 |
+
model_tag="https://huggingface.co/wietsedv/tacotron2-dutch/resolve/main/tts_ljspeech_finetune_tacotron2.v5_train.loss.ave.zip",
|
61 |
+
vocoder_tag="parallel_wavegan/ljspeech_parallel_wavegan.v3",
|
62 |
+
device="cpu",
|
63 |
+
threshold=0.5,
|
64 |
+
minlenratio=0.0,
|
65 |
+
maxlenratio=10.0,
|
66 |
+
use_att_constraint=True,
|
67 |
+
backward_window=1,
|
68 |
+
forward_window=4,
|
69 |
+
)
|
70 |
#eng_text2speech = Text2Speech.from_pretrained(
|
71 |
# model_tag="kan-bayashi/ljspeech_tacotron2",
|
72 |
# vocoder_tag="parallel_wavegan/ljspeech_parallel_wavegan.v3",
|