import gradio as gr | |
import time | |
import urllib.request | |
from pathlib import Path | |
import os | |
import torch | |
import scipy.io.wavfile | |
from espnet2.bin.tts_inference import Text2Speech | |
from espnet2.utils.types import str_or_none | |
# def load_model(model_tag, vocoder_tag): | |
# from espnet_model_zoo.downloader import ModelDownloader | |
# kwargs = {} | |
# # Model | |
# d = ModelDownloader() | |
# kwargs = d.download_and_unpack(model_tag) | |
# # Vocoder | |
# download_dir = Path(os.path.expanduser("~/.cache/parallel_wavegan")) | |
# vocoder_dir = download_dir / vocoder_tag | |
# os.makedirs(vocoder_dir, exist_ok=True) | |
# kwargs["vocoder_config"] = vocoder_dir / "config.yml" | |
# if not kwargs["vocoder_config"].exists(): | |
# urllib.request.urlretrieve(f"https://huggingface.co/{vocoder_tag}/resolve/main/config.yml", kwargs["vocoder_config"]) | |
# kwargs["vocoder_file"] = vocoder_dir / "checkpoint-50000steps.pkl" | |
# if not kwargs["vocoder_file"].exists(): | |
# urllib.request.urlretrieve(f"https://huggingface.co/{vocoder_tag}/resolve/main/checkpoint-50000steps.pkl", kwargs["vocoder_file"]) | |
# return Text2Speech( | |
# **kwargs, | |
# device="cpu", | |
# threshold=0.5, | |
# minlenratio=0.0, | |
# maxlenratio=10.0, | |
# use_att_constraint=True, | |
# backward_window=1, | |
# forward_window=4, | |
# ) | |
# gos_text2speech = load_model('https://huggingface.co/wietsedv/tacotron2-gronings/resolve/main/tts_ljspeech_finetune_tacotron2.v5_train.loss.ave.zip', 'wietsedv/parallelwavegan-gronings') | |
# nld_text2speech = load_model('https://huggingface.co/wietsedv/tacotron2-dutch/resolve/main/tts_ljspeech_finetune_tacotron2.v5_train.loss.ave.zip', 'wietsedv/parallelwavegan-dutch') | |
gos_text2speech = Text2Speech.from_pretrained( | |
model_tag="https://huggingface.co/wietsedv/tacotron2-gronings/resolve/main/tts_ljspeech_finetune_tacotron2.v5_train.loss.ave.zip", | |
vocoder_tag="parallel_wavegan/ljspeech_parallel_wavegan.v3", | |
device="cpu", | |
threshold=0.5, | |
minlenratio=0.0, | |
maxlenratio=10.0, | |
use_att_constraint=True, | |
backward_window=1, | |
forward_window=4, | |
) | |
nld_text2speech = Text2Speech.from_pretrained( | |
model_tag="https://huggingface.co/wietsedv/tacotron2-dutch/resolve/main/tts_ljspeech_finetune_tacotron2.v5_train.loss.ave.zip", | |
vocoder_tag="parallel_wavegan/ljspeech_parallel_wavegan.v3", | |
device="cpu", | |
threshold=0.5, | |
minlenratio=0.0, | |
maxlenratio=10.0, | |
use_att_constraint=True, | |
backward_window=1, | |
forward_window=4, | |
) | |
#eng_text2speech = Text2Speech.from_pretrained( | |
# model_tag="kan-bayashi/ljspeech_tacotron2", | |
# vocoder_tag="parallel_wavegan/ljspeech_parallel_wavegan.v3", | |
# device="cpu", | |
# threshold=0.5, | |
# minlenratio=0.0, | |
# maxlenratio=10.0, | |
# use_att_constraint=True, | |
# backward_window=1, | |
# forward_window=4, | |
#) | |
def inference(text,lang): | |
with torch.no_grad(): | |
if lang == "gronings": | |
wav = gos_text2speech(text)["wav"] | |
scipy.io.wavfile.write("out.wav", gos_text2speech.fs , wav.view(-1).cpu().numpy()) | |
if lang == "dutch": | |
wav = nld_text2speech(text)["wav"] | |
scipy.io.wavfile.write("out.wav", nld_text2speech.fs , wav.view(-1).cpu().numpy()) | |
#if lang == "english": | |
# wav = eng_text2speech(text)["wav"] | |
# scipy.io.wavfile.write("out.wav", eng_text2speech.fs , wav.view(-1).cpu().numpy()) | |
return "out.wav", "out.wav" | |
title = "GroTTS" | |
examples = [ | |
['Ze gingen mit klas noar waddendiek, over en deur bragel lopen.', 'gronings'] | |
] | |
gr.Interface( | |
inference, | |
[gr.inputs.Textbox(label="input text", lines=3), gr.inputs.Radio(choices=["gronings", "dutch"], type="value", default="gronings", label="language")], | |
[gr.outputs.Audio(type="file", label="Output"), gr.outputs.File()], | |
title=title, | |
examples=examples | |
).launch(enable_queue=True) | |