Spaces:
Running
Running
Update NamedEntity.py
Browse files- NamedEntity.py +0 -7
NamedEntity.py
CHANGED
@@ -32,16 +32,9 @@ class NER:
|
|
32 |
The Constructor for the Named Entity Recognition class.
|
33 |
:param text_to_analyse: The text in which to find named entities.
|
34 |
"""
|
35 |
-
if text_to_analyse is None or len(text_to_analyse.strip()) == 0:
|
36 |
-
raise ValueError("text_to_analyse must not be empty and must be set to a valid string value")
|
37 |
-
|
38 |
self.tokenizer = AutoTokenizer.from_pretrained("dslim/bert-base-NER")
|
39 |
-
if self.tokenizer is None:
|
40 |
-
raise ValueError("Unable to load tokenizer from DSLIM BERT model")
|
41 |
|
42 |
self.model = AutoModelForTokenClassification.from_pretrained("dslim/bert-base-NER")
|
43 |
-
if self.model is None:
|
44 |
-
raise ValueError("Unable to load model from DSLIM BERT model")
|
45 |
|
46 |
self.nlp = pipeline("ner", model=self.model, tokenizer=self.tokenizer, grouped_entities=True)
|
47 |
if self.nlp is None:
|
|
|
32 |
The Constructor for the Named Entity Recognition class.
|
33 |
:param text_to_analyse: The text in which to find named entities.
|
34 |
"""
|
|
|
|
|
|
|
35 |
self.tokenizer = AutoTokenizer.from_pretrained("dslim/bert-base-NER")
|
|
|
|
|
36 |
|
37 |
self.model = AutoModelForTokenClassification.from_pretrained("dslim/bert-base-NER")
|
|
|
|
|
38 |
|
39 |
self.nlp = pipeline("ner", model=self.model, tokenizer=self.tokenizer, grouped_entities=True)
|
40 |
if self.nlp is None:
|