whispy commited on
Commit
e0696c7
·
1 Parent(s): 31fe05d

Upload 3 files

Browse files
Files changed (3) hide show
  1. app.py +101 -0
  2. packages.txt +1 -0
  3. requirements.txt +3 -0
app.py ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ import gradio as gr
4
+ import pytube as pt
5
+ from transformers import pipeline
6
+
7
+
8
+ MODEL_NAME = "whispy/whisper_italian"
9
+
10
+ device = 0 if torch.cuda.is_available() else "cpu"
11
+
12
+ summarizer = pipeline(
13
+ "summarization",
14
+ model="it5/it5-efficient-small-el32-news-summarization",
15
+ )
16
+
17
+ pipe = pipeline(
18
+ task="automatic-speech-recognition",
19
+ model=MODEL_NAME,
20
+ chunk_length_s=30,
21
+ device=device,
22
+ )
23
+
24
+ def transcribe(microphone, file_upload):
25
+ warn_output = ""
26
+ if (microphone is not None) and (file_upload is not None):
27
+ warn_output = (
28
+ "WARNING: You've uploaded an audio file and used the microphone. "
29
+ "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
30
+ )
31
+
32
+ elif (microphone is None) and (file_upload is None):
33
+ return "ERROR: You have to either use the microphone or upload an audio file"
34
+
35
+ file = microphone if microphone is not None else file_upload
36
+
37
+ text = pipe(file)["text"]
38
+
39
+ return warn_output + text
40
+
41
+
42
+ def _return_yt_html_embed(yt_url):
43
+ video_id = yt_url.split("?v=")[-1]
44
+ HTML_str = (
45
+ f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
46
+ " </center>"
47
+ )
48
+ return HTML_str
49
+
50
+
51
+ def yt_transcribe(yt_url):
52
+ yt = pt.YouTube(yt_url)
53
+ html_embed_str = _return_yt_html_embed(yt_url)
54
+ stream = yt.streams.filter(only_audio=True)[0]
55
+ stream.download(filename="audio.mp3")
56
+
57
+ text = pipe("audio.mp3")["text"]
58
+ summary = summarizer(text)
59
+ summary = summary[0]["summary_text"]
60
+
61
+ return html_embed_str, text, summary
62
+
63
+ demo = gr.Blocks()
64
+
65
+ mf_transcribe = gr.Interface(
66
+ fn=transcribe,
67
+ inputs=[
68
+ gr.inputs.Audio(source="microphone", type="filepath", optional=True),
69
+ gr.inputs.Audio(source="upload", type="filepath", optional=True),
70
+ ],
71
+ outputs="text",
72
+ layout="horizontal",
73
+ theme="huggingface",
74
+ title="Whisper Demo: Transcribe Audio",
75
+ description=(
76
+ "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the the fine-tuned"
77
+ f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
78
+ " of arbitrary length."
79
+ ),
80
+ allow_flagging="never",
81
+ )
82
+
83
+ yt_transcribe = gr.Interface(
84
+ fn=yt_transcribe,
85
+ inputs=[gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")],
86
+ outputs=["html", "text", "text"],
87
+ layout="horizontal",
88
+ theme="huggingface",
89
+ title="Whisper Demo: Transcribe YouTube",
90
+ description=(
91
+ "Transcribe long-form YouTube videos with the click of a button! Demo uses the the fine-tuned checkpoint:"
92
+ f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files of"
93
+ " arbitrary length."
94
+ ),
95
+ allow_flagging="never",
96
+ )
97
+
98
+ with demo:
99
+ gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"])
100
+
101
+ demo.launch(enable_queue=True)
packages.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ ffmpeg
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ transformers
2
+ torch
3
+ pytube