Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- app.py +118 -51
- requirements.txt +4 -6
app.py
CHANGED
@@ -1,60 +1,127 @@
|
|
1 |
-
import gradio as gr
|
2 |
import torch
|
3 |
-
|
|
|
|
|
|
|
4 |
from diffusers import DiffusionPipeline
|
5 |
-
from transformers import (
|
6 |
-
WhisperForConditionalGeneration,
|
7 |
-
WhisperProcessor,
|
8 |
-
)
|
9 |
|
10 |
-
import os
|
11 |
-
MY_SECRET_TOKEN=os.environ.get('HF_TOKEN_SD')
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
diffuser_pipeline = DiffusionPipeline.from_pretrained(
|
18 |
"CompVis/stable-diffusion-v1-4",
|
19 |
-
custom_pipeline="speech_to_image_diffusion",
|
20 |
-
speech_model=model,
|
21 |
-
speech_processor=processor,
|
22 |
-
use_auth_token=MY_SECRET_TOKEN,
|
23 |
-
revision="fp16",
|
24 |
-
torch_dtype=torch.float16,
|
25 |
)
|
26 |
|
27 |
-
diffuser_pipeline.enable_attention_slicing()
|
28 |
-
diffuser_pipeline = diffuser_pipeline.to(device)
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import pytube as pt
|
5 |
+
from transformers import pipeline
|
6 |
from diffusers import DiffusionPipeline
|
|
|
|
|
|
|
|
|
7 |
|
|
|
|
|
8 |
|
9 |
+
MODEL_NAME = "whispy/whisper_italian"
|
10 |
+
|
11 |
+
device = 0 if torch.cuda.is_available() else "cpu"
|
12 |
+
|
13 |
+
summarizer = pipeline(
|
14 |
+
"summarization",
|
15 |
+
model="it5/it5-efficient-small-el32-news-summarization",
|
16 |
+
)
|
17 |
+
|
18 |
+
pipe = pipeline(
|
19 |
+
task="automatic-speech-recognition",
|
20 |
+
model=MODEL_NAME,
|
21 |
+
chunk_length_s=30,
|
22 |
+
device=device,
|
23 |
+
)
|
24 |
|
25 |
diffuser_pipeline = DiffusionPipeline.from_pretrained(
|
26 |
"CompVis/stable-diffusion-v1-4",
|
27 |
+
#custom_pipeline="speech_to_image_diffusion",
|
28 |
+
#speech_model=model,
|
29 |
+
#speech_processor=processor,
|
30 |
+
#use_auth_token=MY_SECRET_TOKEN,
|
31 |
+
#revision="fp16",
|
32 |
+
#torch_dtype=torch.float16,
|
33 |
)
|
34 |
|
35 |
+
#diffuser_pipeline.enable_attention_slicing()
|
36 |
+
#diffuser_pipeline = diffuser_pipeline.to(device)
|
37 |
+
|
38 |
+
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-it-en")
|
39 |
+
|
40 |
+
def transcribe(microphone, file_upload):
|
41 |
+
warn_output = ""
|
42 |
+
if (microphone is not None) and (file_upload is not None):
|
43 |
+
warn_output = (
|
44 |
+
"WARNING: You've uploaded an audio file and used the microphone. "
|
45 |
+
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
|
46 |
+
)
|
47 |
+
|
48 |
+
elif (microphone is None) and (file_upload is None):
|
49 |
+
return "ERROR: You have to either use the microphone or upload an audio file"
|
50 |
+
|
51 |
+
file = microphone if microphone is not None else file_upload
|
52 |
+
|
53 |
+
text = pipe(file)["text"]
|
54 |
+
|
55 |
+
translate = translator(text)
|
56 |
+
translate = translate[0]["translation_text"]
|
57 |
+
|
58 |
+
output = diffuser_pipeline(translate)
|
59 |
+
image = output.images[0]
|
60 |
+
|
61 |
+
return warn_output + text, translate, image
|
62 |
+
|
63 |
+
|
64 |
+
def _return_yt_html_embed(yt_url):
|
65 |
+
video_id = yt_url.split("?v=")[-1]
|
66 |
+
HTML_str = (
|
67 |
+
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
|
68 |
+
" </center>"
|
69 |
+
)
|
70 |
+
return HTML_str
|
71 |
+
|
72 |
+
|
73 |
+
def yt_transcribe(yt_url):
|
74 |
+
yt = pt.YouTube(yt_url)
|
75 |
+
html_embed_str = _return_yt_html_embed(yt_url)
|
76 |
+
stream = yt.streams.filter(only_audio=True)[0]
|
77 |
+
stream.download(filename="audio.mp3")
|
78 |
+
|
79 |
+
text = pipe("audio.mp3")["text"]
|
80 |
+
|
81 |
+
summary = summarizer(text)
|
82 |
+
summary = summary[0]["summary_text"]
|
83 |
+
|
84 |
+
translate = translator(summary)
|
85 |
+
translate = translate[0]["translation_text"]
|
86 |
+
|
87 |
+
return html_embed_str, text, summary, translate
|
88 |
+
|
89 |
+
demo = gr.Blocks()
|
90 |
+
|
91 |
+
mf_transcribe = gr.Interface(
|
92 |
+
fn=transcribe,
|
93 |
+
inputs=[
|
94 |
+
gr.inputs.Audio(source="microphone", type="filepath", optional=True),
|
95 |
+
gr.inputs.Audio(source="upload", type="filepath", optional=True),
|
96 |
+
],
|
97 |
+
outputs=["text", "text", "image"],
|
98 |
+
layout="horizontal",
|
99 |
+
theme="huggingface",
|
100 |
+
title="Whisper Demo: Transcribe Audio",
|
101 |
+
description=(
|
102 |
+
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the the fine-tuned"
|
103 |
+
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and π€ Transformers to transcribe audio files"
|
104 |
+
" of arbitrary length."
|
105 |
+
),
|
106 |
+
allow_flagging="never",
|
107 |
+
)
|
108 |
+
|
109 |
+
yt_transcribe = gr.Interface(
|
110 |
+
fn=yt_transcribe,
|
111 |
+
inputs=[gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")],
|
112 |
+
outputs=["html", "text", "text", "text"],
|
113 |
+
layout="horizontal",
|
114 |
+
theme="huggingface",
|
115 |
+
title="Whisper Demo: Transcribe YouTube",
|
116 |
+
description=(
|
117 |
+
"Transcribe long-form YouTube videos with the click of a button! Demo uses the the fine-tuned checkpoint:"
|
118 |
+
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and π€ Transformers to transcribe audio files of"
|
119 |
+
" arbitrary length."
|
120 |
+
),
|
121 |
+
allow_flagging="never",
|
122 |
+
)
|
123 |
+
|
124 |
+
with demo:
|
125 |
+
gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"])
|
126 |
+
|
127 |
+
demo.launch(enable_queue=True)
|
requirements.txt
CHANGED
@@ -1,7 +1,5 @@
|
|
1 |
-
|
2 |
torch
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
git+https://github.com/huggingface/diffusers
|
7 |
-
git+https://github.com/openai/whisper.git
|
|
|
1 |
+
transformers
|
2 |
torch
|
3 |
+
pytube
|
4 |
+
diffusers
|
5 |
+
sentencepiece
|
|
|
|