sanchit-gandhi commited on
Commit
fcfc2f6
·
1 Parent(s): ae10915

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +64 -0
app.py ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import streamlit as st
3
+ from huggingface_hub import Repository
4
+ from pandas import read_csv
5
+ from st_aggrid import AgGrid, GridOptionsBuilder, JsCode
6
+
7
+ st.set_page_config(layout="wide")
8
+
9
+
10
+ st.markdown("# 🤗 Whisper Event: Final Leaderboard")
11
+
12
+ RESULTS_REPO = "results"
13
+ RESULTS_URL = os.path.join(
14
+ "https://huggingface.co/datasets/whisper-event", RESULTS_REPO
15
+ )
16
+
17
+ HF_TOKEN = os.environ.get("HF_TOKEN")
18
+
19
+ results_repo = Repository(
20
+ local_dir="results", clone_from=RESULTS_URL, use_auth_token=HF_TOKEN
21
+ )
22
+
23
+ results_repo.git_pull()
24
+
25
+ query_params = st.experimental_get_query_params()
26
+ if "first_query_params" not in st.session_state:
27
+ st.session_state.first_query_params = query_params
28
+ first_query_params = st.session_state.first_query_params
29
+
30
+ selectable_datasets = ["mozilla-foundation/common_voice_11_0", "google/fleurs"]
31
+ selectable_metrics = ["wer", "cer"]
32
+ sorting_metric = selectable_metrics[0]
33
+ split = "test"
34
+
35
+ dataset = st.selectbox(
36
+ "Dataset",
37
+ selectable_datasets,
38
+ help="Select a dataset to see the leaderboard!"
39
+ )
40
+
41
+ dataset_df = read_csv(f"results/{dataset.split('/')[-1]}/results.csv")
42
+
43
+ current_query_params = {"dataset": [dataset]}
44
+ st.experimental_set_query_params(**current_query_params)
45
+
46
+ # Make the leaderboard
47
+ gb = GridOptionsBuilder.from_dataframe(dataset_df)
48
+ gb.configure_default_column(sortable=False)
49
+ gb.configure_column(
50
+ "model_id",
51
+ cellRenderer=JsCode('''function(params) {return '<a target="_blank" href="https://huggingface.co/'+params.value+'">'+params.value+'</a>'}'''),
52
+ )
53
+
54
+ for name in selectable_metrics:
55
+ gb.configure_column(name, type=["numericColumn", "numberColumnFilter", "customNumericFormat"], precision=2, aggFunc='sum')
56
+
57
+ gb.configure_column(
58
+ sorting_metric,
59
+ sortable=True,
60
+ )
61
+
62
+ go = gb.build()
63
+ fit_columns = len(dataset_df.columns) < 10
64
+ AgGrid(dataset_df, gridOptions=go, height=28 * len(dataset_df) + (35 if fit_columns else 41), allow_unsafe_jscode=True, fit_columns_on_grid_load=fit_columns, enable_enterprise_modules=False)