File size: 5,920 Bytes
4876346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import os
import torch
import argparse
import numpy as np 
from transformers import AutoFeatureExtractor, WhisperModel

import torchaudio
import torch.nn as nn
import torch.nn.functional as F

import speechbrain
import librosa

from subprocess import CalledProcessError, run

#openai whispers load audio
SAMPLE_RATE=16000
def denorm(input_x):
    input_x = input_x*(5-0) + 0
    return input_x
    
def load_audio(file: str, sr: int = SAMPLE_RATE):
    """
    Open an audio file and read as mono waveform, resampling as necessary

    Parameters
    ----------
    file: str
        The audio file to open

    sr: int
        The sample rate to resample the audio if necessary

    Returns
    -------
    A NumPy array containing the audio waveform, in float32 dtype.
    """

    # This launches a subprocess to decode audio while down-mixing
    # and resampling as necessary.  Requires the ffmpeg CLI in PATH.
    # fmt: off
    cmd = [
        "ffmpeg",
        "-nostdin",
        "-threads", "0",
        "-i", file,
        "-f", "s16le",
        "-ac", "1",
        "-acodec", "pcm_s16le",
        "-ar", str(sr),
        "-"
    ]
    # fmt: on
    try:
        out = run(cmd, capture_output=True, check=True).stdout
    except CalledProcessError as e:
        raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e

    return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0

class MosPredictor(nn.Module):
    
    def __init__(self):
        super().__init__()
        
        self.mean_net_conv = nn.Sequential(
            nn.Conv2d(in_channels = 1, out_channels = 16, kernel_size = (3,3), padding = (1,1)),
            nn.Conv2d(in_channels = 16, out_channels = 16, kernel_size = (3,3), padding = (1,1)),
            nn.Conv2d(in_channels = 16, out_channels = 16, kernel_size = (3,3), padding = (1,1), stride=(1,3)),
            nn.Dropout(0.3),
            nn.BatchNorm2d(16),
            nn.ReLU(),
            nn.Conv2d(in_channels = 16, out_channels = 32, kernel_size = (3,3), padding = (1,1)),
            nn.Conv2d(in_channels = 32, out_channels = 32, kernel_size = (3,3), padding = (1,1)),
            nn.Conv2d(in_channels = 32, out_channels = 32, kernel_size = (3,3), padding = (1,1), stride=(1,3)),
            nn.Dropout(0.3),
            nn.BatchNorm2d(32),
            nn.ReLU(),
            nn.Conv2d(in_channels = 32, out_channels = 64, kernel_size = (3,3), padding = (1,1)),
            nn.Conv2d(in_channels = 64, out_channels = 64, kernel_size = (3,3), padding = (1,1)),
            nn.Conv2d(in_channels = 64, out_channels = 64, kernel_size = (3,3), padding = (1,1), stride=(1,3)),
            nn.Dropout(0.3),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.Conv2d(in_channels = 64, out_channels = 128, kernel_size = (3,3), padding = (1,1)),
            nn.Conv2d(in_channels = 128, out_channels = 128, kernel_size = (3,3), padding = (1,1)),
            nn.Conv2d(in_channels = 128, out_channels = 128, kernel_size = (3,3), padding = (1,1), stride=(1,3)),
            nn.Dropout(0.3),
            nn.BatchNorm2d(128),
            nn.ReLU())
        
        self.relu_ = nn.ReLU()
        self.sigmoid_ = nn.Sigmoid()
        
        self.ssl_features = 1280
        self.dim_layer = nn.Linear(self.ssl_features, 512)

        self.mean_net_rnn = nn.LSTM(input_size = 512, hidden_size = 128, num_layers = 1, batch_first = True, bidirectional = True)
        self.mean_net_dnn = nn.Sequential(
            nn.Linear(256, 128),
            nn.ReLU(),
            nn.Dropout(0.3),
        )        

        self.sinc = speechbrain.nnet.CNN.SincConv(in_channels=1, out_channels=257, kernel_size=251, stride=256, sample_rate=16000)
        self.att_output_layer_quality = nn.MultiheadAttention(128, num_heads=8)                
        self.output_layer_quality = nn.Linear(128, 1)
        self.qualaverage_score = nn.AdaptiveAvgPool1d(1)  
     
        self.att_output_layer_intell = nn.MultiheadAttention(128, num_heads=8)           
        self.output_layer_intell = nn.Linear(128, 1)
        self.intellaverage_score = nn.AdaptiveAvgPool1d(1)  
                       
        self.att_output_layer_stoi= nn.MultiheadAttention(128, num_heads=8)          
        self.output_layer_stoi = nn.Linear(128, 1)        
        self.stoiaverage_score = nn.AdaptiveAvgPool1d(1) 

    def new_method(self):
        self.sin_conv 
                
    def forward(self, wav, lps, whisper):
        #SSL Features
        wav_ = wav.squeeze(1)  ## [batches, audio_len]
        ssl_feat_red = self.dim_layer(whisper.squeeze(1))
        ssl_feat_red = self.relu_(ssl_feat_red)
 
        #PS Features
        sinc_feat=self.sinc(wav.squeeze(1))
        unsq_sinc =  torch.unsqueeze(sinc_feat, axis=1)
        concat_lps_sinc = torch.cat((lps,unsq_sinc), axis=2)
        cnn_out = self.mean_net_conv(concat_lps_sinc)
        batch = concat_lps_sinc.shape[0]
        time = concat_lps_sinc.shape[2]        
        re_cnn = cnn_out.view((batch, time, 512))
        
        concat_feat = torch.cat((re_cnn,ssl_feat_red), axis=1)
        out_lstm, (h, c) = self.mean_net_rnn(concat_feat)
        out_dense = self.mean_net_dnn(out_lstm) # (batch, seq, 1)       
        
        quality_att, _ = self.att_output_layer_quality (out_dense, out_dense, out_dense) 
        frame_quality = self.output_layer_quality(quality_att)
        frame_quality = self.sigmoid_(frame_quality)   
        quality_utt = self.qualaverage_score(frame_quality.permute(0,2,1))

        int_att, _ = self.att_output_layer_intell (out_dense, out_dense, out_dense) 
        frame_int = self.output_layer_intell(int_att)
        frame_int = self.sigmoid_(frame_int)   
        int_utt = self.intellaverage_score(frame_int.permute(0,2,1))

                
        return quality_utt.squeeze(1), int_utt.squeeze(1), frame_quality.squeeze(2), frame_int.squeeze(2)