Spaces:
Runtime error
Runtime error
Linoy Tsaban
commited on
Commit
·
8832b9b
1
Parent(s):
dd28623
Create utils.py
Browse files
utils.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
import yaml
|
5 |
+
import math
|
6 |
+
|
7 |
+
import torchvision.transforms as T
|
8 |
+
from torchvision.io import read_video,write_video
|
9 |
+
import os
|
10 |
+
import random
|
11 |
+
import numpy as np
|
12 |
+
from torchvision.io import write_video
|
13 |
+
# from kornia.filters import joint_bilateral_blur
|
14 |
+
from kornia.geometry.transform import remap
|
15 |
+
from kornia.utils.grid import create_meshgrid
|
16 |
+
import cv2
|
17 |
+
|
18 |
+
def save_video_frames(video_path, img_size=(512,512)):
|
19 |
+
video, _, _ = read_video(video_path, output_format="TCHW")
|
20 |
+
# rotate video -90 degree if video is .mov format. this is a weird bug in torchvision
|
21 |
+
if video_path.endswith('.mov'):
|
22 |
+
video = T.functional.rotate(video, -90)
|
23 |
+
video_name = Path(video_path).stem
|
24 |
+
os.makedirs(f'data/{video_name}', exist_ok=True)
|
25 |
+
for i in range(len(video)):
|
26 |
+
ind = str(i).zfill(5)
|
27 |
+
image = T.ToPILImage()(video[i])
|
28 |
+
image_resized = image.resize((img_size), resample=Image.Resampling.LANCZOS)
|
29 |
+
image_resized.save(f'data/{video_name}/{ind}.png')
|
30 |
+
|
31 |
+
def video_to_frames(video_path, img_size=(512,512)):
|
32 |
+
video, _, _ = read_video(video_path, output_format="TCHW")
|
33 |
+
# rotate video -90 degree if video is .mov format. this is a weird bug in torchvision
|
34 |
+
if video_path.endswith('.mov'):
|
35 |
+
video = T.functional.rotate(video, -90)
|
36 |
+
video_name = Path(video_path).stem
|
37 |
+
# os.makedirs(f'data/{video_name}', exist_ok=True)
|
38 |
+
frames = []
|
39 |
+
for i in range(len(video)):
|
40 |
+
ind = str(i).zfill(5)
|
41 |
+
image = T.ToPILImage()(video[i])
|
42 |
+
image_resized = image.resize((img_size), resample=Image.Resampling.LANCZOS)
|
43 |
+
# image_resized.save(f'data/{video_name}/{ind}.png')
|
44 |
+
frames.append(image_resized)
|
45 |
+
return frames
|
46 |
+
|
47 |
+
def add_dict_to_yaml_file(file_path, key, value):
|
48 |
+
data = {}
|
49 |
+
|
50 |
+
# If the file already exists, load its contents into the data dictionary
|
51 |
+
if os.path.exists(file_path):
|
52 |
+
with open(file_path, 'r') as file:
|
53 |
+
data = yaml.safe_load(file)
|
54 |
+
|
55 |
+
# Add or update the key-value pair
|
56 |
+
data[key] = value
|
57 |
+
|
58 |
+
# Save the data back to the YAML file
|
59 |
+
with open(file_path, 'w') as file:
|
60 |
+
yaml.dump(data, file)
|
61 |
+
|
62 |
+
def isinstance_str(x: object, cls_name: str):
|
63 |
+
"""
|
64 |
+
Checks whether x has any class *named* cls_name in its ancestry.
|
65 |
+
Doesn't require access to the class's implementation.
|
66 |
+
|
67 |
+
Useful for patching!
|
68 |
+
"""
|
69 |
+
|
70 |
+
for _cls in x.__class__.__mro__:
|
71 |
+
if _cls.__name__ == cls_name:
|
72 |
+
return True
|
73 |
+
|
74 |
+
return False
|
75 |
+
|
76 |
+
|
77 |
+
def batch_cosine_sim(x, y):
|
78 |
+
if type(x) is list:
|
79 |
+
x = torch.cat(x, dim=0)
|
80 |
+
if type(y) is list:
|
81 |
+
y = torch.cat(y, dim=0)
|
82 |
+
x = x / x.norm(dim=-1, keepdim=True)
|
83 |
+
y = y / y.norm(dim=-1, keepdim=True)
|
84 |
+
similarity = x @ y.T
|
85 |
+
return similarity
|
86 |
+
|
87 |
+
|
88 |
+
def load_imgs(data_path, n_frames, device='cuda', pil=False):
|
89 |
+
imgs = []
|
90 |
+
pils = []
|
91 |
+
for i in range(n_frames):
|
92 |
+
img_path = os.path.join(data_path, "%05d.jpg" % i)
|
93 |
+
if not os.path.exists(img_path):
|
94 |
+
img_path = os.path.join(data_path, "%05d.png" % i)
|
95 |
+
img_pil = Image.open(img_path)
|
96 |
+
pils.append(img_pil)
|
97 |
+
img = T.ToTensor()(img_pil).unsqueeze(0)
|
98 |
+
imgs.append(img)
|
99 |
+
if pil:
|
100 |
+
return torch.cat(imgs).to(device), pils
|
101 |
+
return torch.cat(imgs).to(device)
|
102 |
+
|
103 |
+
|
104 |
+
def save_video(raw_frames, save_path, fps=10):
|
105 |
+
video_codec = "libx264"
|
106 |
+
video_options = {
|
107 |
+
"crf": "18", # Constant Rate Factor (lower value = higher quality, 18 is a good balance)
|
108 |
+
"preset": "slow", # Encoding preset (e.g., ultrafast, superfast, veryfast, faster, fast, medium, slow, slower, veryslow)
|
109 |
+
}
|
110 |
+
|
111 |
+
frames = (raw_frames * 255).to(torch.uint8).cpu().permute(0, 2, 3, 1)
|
112 |
+
write_video(save_path, frames, fps=fps, video_codec=video_codec, options=video_options)
|
113 |
+
|
114 |
+
|
115 |
+
def seed_everything(seed):
|
116 |
+
torch.manual_seed(seed)
|
117 |
+
torch.cuda.manual_seed(seed)
|
118 |
+
random.seed(seed)
|
119 |
+
np.random.seed(seed)
|
120 |
+
|
121 |
+
|