File size: 2,355 Bytes
afc6bc7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
from transformers import Wav2Vec2ForSequenceClassification, AutoFeatureExtractor
import torch
import librosa
model_id = "facebook/mms-lid-1024"
processor = AutoFeatureExtractor.from_pretrained(model_id)
model = Wav2Vec2ForSequenceClassification.from_pretrained(model_id)
LID_SAMPLING_RATE = 16_000
LID_TOPK = 10
LID_THRESHOLD = 0.33
LID_LANGUAGES = {}
with open(f"data/lid/all_langs.tsv") as f:
for line in f:
iso, name = line.split(" ", 1)
LID_LANGUAGES[iso] = name
def identify(audio_source=None, microphone=None, file_upload=None):
if audio_source is None and microphone is None and file_upload is None:
# HACK: need to handle this case for some reason
return {}
if type(microphone) is dict:
# HACK: microphone variable is a dict when running on examples
microphone = microphone["name"]
audio_fp = (
file_upload if "upload" in str(audio_source or "").lower() else microphone
)
if audio_fp is None:
return "ERROR: You have to either use the microphone or upload an audio file"
audio_samples = librosa.load(audio_fp, sr=LID_SAMPLING_RATE, mono=True)[0]
inputs = processor(
audio_samples, sampling_rate=LID_SAMPLING_RATE, return_tensors="pt"
)
# set device
if torch.cuda.is_available():
device = torch.device("cuda")
elif (
hasattr(torch.backends, "mps")
and torch.backends.mps.is_available()
and torch.backends.mps.is_built()
):
device = torch.device("mps")
else:
device = torch.device("cpu")
model.to(device)
inputs = inputs.to(device)
with torch.no_grad():
logit = model(**inputs).logits
logit_lsm = torch.log_softmax(logit.squeeze(), dim=-1)
scores, indices = torch.topk(logit_lsm, 5, dim=-1)
scores, indices = torch.exp(scores).to("cpu").tolist(), indices.to("cpu").tolist()
iso2score = {model.config.id2label[int(i)]: s for s, i in zip(scores, indices)}
if max(iso2score.values()) < LID_THRESHOLD:
return "Low confidence in the language identification predictions. Output is not shown!"
return {LID_LANGUAGES[iso]: score for iso, score in iso2score.items()}
LID_EXAMPLES = [
[None, "./assets/english.mp3", None],
[None, "./assets/tamil.mp3", None],
[None, "./assets/burmese.mp3", None],
]
|