shortpingoo / train_model.py
waseoke's picture
Update train_model.py
45b2ac8 verified
import torch
import torch.nn.functional as F
from torch.optim import Adam
from torch.utils.data import DataLoader, Dataset
from pymongo import MongoClient
from transformers import BertTokenizer, BertModel
import numpy as np
# MongoDB Atlas 연결 설정
client = MongoClient(
"mongodb+srv://waseoke:[email protected]/test?retryWrites=true&w=majority"
)
db = client["two_tower_model"]
train_dataset = db["train_dataset"]
# KoBERT 모델 및 토크나이저 로드
tokenizer = BertTokenizer.from_pretrained('monologg/kobert')
model = BertModel.from_pretrained('monologg/kobert')
# 상품 임베딩 함수
def embed_product_data(product):
"""
상품 데이터를 KoBERT로 임베딩하는 함수.
"""
text = (
product.get("product_name", "") + " " + product.get("product_description", "")
)
inputs = tokenizer(
text, return_tensors="pt", truncation=True, padding=True, max_length=128
)
outputs = model(**inputs)
embedding = (
outputs.last_hidden_state.mean(dim=1).detach().numpy().flatten()
) # 평균 풀링
return embedding
# PyTorch Dataset 정의
class TripletDataset(Dataset):
def __init__(self, dataset):
self.dataset = dataset
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
data = self.dataset[idx]
anchor = torch.tensor(data["anchor_embedding"], dtype=torch.float32)
positive = torch.tensor(data["positive_embedding"], dtype=torch.float32)
negative = torch.tensor(data["negative_embedding"], dtype=torch.float32)
return anchor, positive, negative
# MongoDB에서 데이터셋 로드 및 임베딩 변환
def prepare_training_data(verbose=False):
dataset = list(train_dataset.find())
if not dataset:
raise ValueError("No training data found in MongoDB.")
# Anchor, Positive, Negative 임베딩 생성
embedded_dataset = []
for idx, entry in enumerate(dataset):
try:
# Anchor, Positive, Negative 데이터 임베딩
anchor_embedding = embed_product_data(entry["anchor"]["product"])
positive_embedding = embed_product_data(entry["positive"]["product"])
negative_embedding = embed_product_data(entry["negative"]["product"])
# 임베딩 확인 (옵션으로 출력)
if verbose:
print(f"Sample {idx + 1}:")
print(
f"Anchor Embedding: {anchor_embedding[:5]}... (shape: {anchor_embedding.shape})"
)
print(
f"Positive Embedding: {positive_embedding[:5]}... (shape: {positive_embedding.shape})"
)
print(
f"Negative Embedding: {negative_embedding[:5]}... (shape: {negative_embedding.shape})"
)
# 임베딩 결과 저장
embedded_dataset.append(
{
"anchor_embedding": anchor_embedding,
"positive_embedding": positive_embedding,
"negative_embedding": negative_embedding,
}
)
except Exception as e:
print(f"Error embedding data at sample {idx + 1}: {e}")
return TripletDataset(embedded_dataset)
# 데이터셋 검증용 함수
def validate_embeddings():
"""
데이터셋 임베딩을 생성하고 각 임베딩의 일부를 출력하여 확인.
"""
print("Validating embeddings...")
triplet_dataset = prepare_training_data(verbose=True)
print(f"Total samples: {len(triplet_dataset)}")
return triplet_dataset
# Triplet Loss를 학습시키는 함수
def train_triplet_model(
product_model, train_loader, num_epochs=10, learning_rate=0.001, margin=0.05
):
optimizer = Adam(product_model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
product_model.train()
total_loss = 0
for anchor, positive, negative in train_loader:
optimizer.zero_grad()
# Forward pass
anchor_vec = product_model(anchor)
positive_vec = product_model(positive)
negative_vec = product_model(negative)
# Triplet loss 계산
positive_distance = F.pairwise_distance(anchor_vec, positive_vec)
negative_distance = F.pairwise_distance(anchor_vec, negative_vec)
triplet_loss = torch.clamp(
positive_distance - negative_distance + margin, min=0
).mean()
# 역전파와 최적화
triplet_loss.backward()
optimizer.step()
total_loss += triplet_loss.item()
print(
f"Epoch {epoch + 1}/{num_epochs}, Loss: {total_loss / len(train_loader):.4f}"
)
return product_model
# 모델 학습 파이프라인
def main():
# 모델 초기화 (예시 모델)
product_model = torch.nn.Sequential(
torch.nn.Linear(768, 256), # 768: KoBERT 임베딩 차원
torch.nn.ReLU(),
torch.nn.Linear(256, 128),
)
# 데이터 준비
triplet_dataset = prepare_training_data()
train_loader = DataLoader(triplet_dataset, batch_size=16, shuffle=True)
# 모델 학습
trained_model = train_triplet_model(product_model, train_loader)
# 학습된 모델 저장
torch.save(trained_model.state_dict(), "product_model.pth")
print("Model training completed and saved.")
print(validate_embeddings())
if __name__ == "__main__":
main()