import streamlit as st
import pandas as pd
from transformers import pipeline
import time
# Load datasets from CSV files
@st.cache_resource
def load_csv_datasets():
jobs_data = pd.read_csv("job_descriptions.csv")
courses_data = pd.read_csv("courses_data.csv")
return jobs_data, courses_data
jobs_data, courses_data = load_csv_datasets()
# Constants
universities_url = "https://www.4icu.org/top-universities-world/"
# Initialize the text generation pipeline
@st.cache_resource
def load_pipeline():
return pipeline("text2text-generation", model="google/flan-t5-large")
qa_pipeline = load_pipeline()
# Streamlit App Interface
st.markdown(
"""
Confused about which career to pursue?
Let CareerCompass help you decide in two simple steps
""",
unsafe_allow_html=True,
)
# Display the appropriate subheader based on profile data status
if "profile_data" not in st.session_state or not st.session_state.get("profile_data_saved", False):
st.markdown("Step 1: Find out profile questions on the left sidebar and follow the instructions.
", unsafe_allow_html=True)
# Sidebar for Profile Setup
st.sidebar.header("Profile Setup")
educational_background = st.sidebar.selectbox("Educational Background", [
"Computer Science", "Engineering", "Business Administration", "Life Sciences",
"Social Sciences", "Arts and Humanities", "Mathematics", "Physical Sciences",
"Law", "Education", "Medical Sciences", "Other"
])
interests = st.sidebar.text_input("Interests (e.g., AI, Data Science, Engineering)")
tech_skills = st.sidebar.text_area("Technical Skills (e.g., Python, SQL, Machine Learning)")
soft_skills = st.sidebar.text_area("Soft Skills (e.g., Communication, Teamwork)")
# Profile validation and saving
def are_profile_fields_filled():
return all([educational_background, interests.strip(), tech_skills.strip(), soft_skills.strip()])
if st.sidebar.button("Save Profile"):
if are_profile_fields_filled():
with st.spinner('Saving your profile...'):
time.sleep(2)
st.session_state.profile_data = {
"educational_background": educational_background,
"interests": interests,
"tech_skills": tech_skills,
"soft_skills": soft_skills
}
st.session_state.profile_data_saved = True # Set the profile data saved flag
st.session_state.question_index = 0 # Initialize question index
st.session_state.answers = {} # Initialize dictionary for answers
st.session_state.ask_additional_questions = None # Reset question flag
st.session_state.show_additional_question_buttons = True # Show buttons after profile save
st.sidebar.success("Profile saved successfully!")
st.markdown("Step 2: For more Accurate Analysis, Do you wish to provide more information?
", unsafe_allow_html=True)
else:
st.sidebar.error("Please fill in all the fields before saving your profile.")
# Button actions
if "show_additional_question_buttons" in st.session_state:
if st.session_state.show_additional_question_buttons:
col1, col2 = st.columns(2)
with col1:
if st.button("Yes, ask me more questions"):
st.session_state.ask_additional_questions = True
st.session_state.show_additional_question_buttons = False # Hide buttons after click
with col2:
if st.button("Skip and generate recommendations"):
st.session_state.ask_additional_questions = False
st.session_state.show_additional_question_buttons = False # Hide buttons after click
# Additional questions for more tailored recommendations
additional_questions = [
"What subjects do you enjoy learning about the most, and why?",
"What activities or hobbies do you find most engaging and meaningful outside of school?",
"Can you describe a perfect day in your dream career? What tasks would you be doing?",
"Are you more inclined towards working independently or as part of a team?",
"Do you prefer structured schedules or flexibility in your work?",
"What values are most important to you in a career (e.g., creativity, stability, helping others)?",
"How important is financial stability to you in your future career?",
"Are you interested in pursuing a career that involves working with people, technology, or the environment?",
"Would you prefer a career with a clear progression path or one with more entrepreneurial freedom?",
"What problems or challenges do you want to solve or address through your career?"
]
# Display dynamic questions or proceed to generating recommendations
if "profile_data" in st.session_state:
if st.session_state.get("ask_additional_questions") is True:
total_questions = len(additional_questions)
if "question_index" not in st.session_state:
st.session_state.question_index = 0
if st.session_state.question_index < total_questions:
question_number = st.session_state.question_index + 1
question = additional_questions[st.session_state.question_index]
# Display question number and question text
st.markdown(f"""### Question {question_number}:
{question}""")
answer = st.text_input("Your Answer", key=f"q{st.session_state.question_index}")
# Display progress bar with formatted text showing "current/total"
progress = (st.session_state.question_index + 1) / total_questions
st.progress(progress)
st.write(f"Progress: {question_number}/{total_questions}")
if st.button("Submit Answer", key=f"submit{st.session_state.question_index}"):
if answer:
st.session_state.answers[question] = answer
st.session_state.question_index += 1
st.rerun() # Trigger app rerun to show the next question
else:
st.warning("Please enter an answer before submitting.")
else:
st.success("All questions have been answered. Click below to generate your recommendations.")
if st.button("Generate Response"):
st.session_state.profile_data.update(st.session_state.answers)
st.session_state.ask_additional_questions = False
st.rerun() # Trigger app rerun after completing all questions
elif st.session_state.get("ask_additional_questions") is False:
# Directly generate recommendations
st.header("Generating Recommendations")
with st.spinner('Generating recommendations...'):
time.sleep(2) # Simulate processing time
# Extracting user profile data
profile = st.session_state.profile_data
user_tech_skills = set(skill.strip().lower() for skill in profile["tech_skills"].split(","))
user_soft_skills = set(skill.strip().lower() for skill in profile["soft_skills"].split(","))
user_interests = set(interest.strip().lower() for interest in profile["interests"].split(","))
user_answers = st.session_state.get('answers', {})
# Job Recommendations using refined scoring logic
def match_job_criteria(row, profile, user_answers):
job_title = row['Job Title'].lower()
job_description = row['Job Description'].lower()
qualifications = row['Qualifications'].lower()
skills = row['skills'].lower()
role = row['Role'].lower()
educational_background = profile['educational_background'].lower()
tech_skills = set(skill.strip().lower() for skill in profile["tech_skills"].split(","))
soft_skills = set(skill.strip().lower() for skill in profile["soft_skills"].split(","))
interests = set(interest.strip().lower() for interest in profile["interests"].split(","))
user_answers_text = ' '.join(user_answers.values()).lower()
score = 0
if educational_background in qualifications or educational_background in job_description:
score += 2
if any(skill in skills for skill in tech_skills):
score += 3
if any(skill in job_description or role for skill in soft_skills):
score += 1
if any(interest in job_title or job_description for interest in interests):
score += 2
if any(answer in job_description or qualifications for answer in user_answers_text.split()):
score += 2
return score >= 5
# Get unique job recommendations
job_recommendations = jobs_data[jobs_data.apply(lambda row: match_job_criteria(row, profile, user_answers), axis=1)]
unique_jobs = job_recommendations.drop_duplicates(subset=['Job Title'])
# Display Job Recommendations in a table with bold job titles
st.subheader("Job Recommendations")
if not unique_jobs.empty:
job_list = unique_jobs.head(5)[['Job Title', 'Job Description']].reset_index(drop=True)
job_list['Job Title'] = job_list['Job Title'].apply(lambda x: f"{x}")
job_list_html = job_list.to_html(index=False, escape=False, justify='left').replace(
'', ' | ')
st.markdown(job_list_html, unsafe_allow_html=True)
else:
st.write("No specific job recommendations found matching your profile.")
st.write("Here are some general job recommendations:")
fallback_jobs = jobs_data.drop_duplicates(subset=['Job Title']).head(3)
fallback_jobs['Job Title'] = fallback_jobs['Job Title'].apply(lambda x: f"{x}")
fallback_list_html = fallback_jobs[['Job Title', 'Job Description']].to_html(
index=False, escape=False, justify='left').replace(
' | ', ' | ')
st.markdown(fallback_list_html, unsafe_allow_html=True)
# Course Recommendations using RAG technique
course_recommendations = courses_data[courses_data['Course Name'].apply(
lambda name: any(interest in name.lower() for interest in user_interests)
)]
# Display Course Recommendations
st.subheader("Recommended Courses")
if not course_recommendations.empty:
for _, row in course_recommendations.head(5).iterrows():
st.write(f"- [{row['Course Name']}]({row['Links']})")
else:
st.write("No specific course recommendations found matching your interests.")
st.write("Here are some general course recommendations aligned with your profile:")
fallback_courses = courses_data[
courses_data['Course Name'].apply(
lambda name: any(
word in name.lower() for word in profile["educational_background"].lower().split() +
[skill.lower() for skill in profile["tech_skills"].split(",")]
)
)
]
if not fallback_courses.empty:
for _, row in fallback_courses.head(3).iterrows():
st.write(f"- [{row['Course Name']}]({row['Links']})")
else:
st.write("Consider exploring courses in fields related to your educational background or technical skills.")
# University Recommendations Section
st.header("Top Universities")
st.write("For further education, you can explore the top universities worldwide:")
st.write(f"[View Top Universities Rankings]({universities_url})")
st.write("Thank you for using the Career Counseling Application with RAG!") |