|
import re |
|
|
|
from transformers import DonutProcessor, VisionEncoderDecoderModel |
|
from datasets import load_dataset |
|
import torch |
|
from PIL import Image |
|
import numpy as np |
|
import streamlit as st |
|
|
|
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-rvlcdip") |
|
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-rvlcdip") |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
model.to(device) |
|
|
|
|
|
|
|
|
|
|
|
|
|
st.title("Classify Document Image") |
|
|
|
file_name = st.file_uploader("Upload a candidate image") |
|
|
|
if file_name is not None: |
|
col1, col2, col3 = st.columns(3) |
|
|
|
image = Image.open(file_name) |
|
image = image.convert("RGB") |
|
|
|
|
|
|
|
|
|
|
|
|
|
task_prompt = "<s_rvlcdip>" |
|
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids |
|
|
|
pixel_values = processor(image, return_tensors="pt").pixel_values |
|
|
|
outputs = model.generate( |
|
pixel_values.to(device), |
|
decoder_input_ids=decoder_input_ids.to(device), |
|
max_length=model.decoder.config.max_position_embeddings, |
|
pad_token_id=processor.tokenizer.pad_token_id, |
|
eos_token_id=processor.tokenizer.eos_token_id, |
|
use_cache=True, |
|
bad_words_ids=[[processor.tokenizer.unk_token_id]], |
|
return_dict_in_generate=True, |
|
) |
|
|
|
sequence = processor.batch_decode(outputs.sequences)[0] |
|
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") |
|
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() |
|
print(processor.token2json(sequence)) |
|
|
|
col1.image(image, use_column_width=True) |
|
|
|
col2.header("Results") |
|
col2.subheader(processor.token2json(sequence)) |
|
|
|
processor_ext = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2") |
|
model_ext = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2") |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
model_ext.to(device) |
|
|
|
|
|
task_prompt = "<s_cord-v2>" |
|
decoder_input_ids = processor_ext.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids |
|
|
|
pixel_values = processor_ext(image, return_tensors="pt").pixel_values |
|
|
|
outputs = model_ext.generate( |
|
pixel_values.to(device), |
|
decoder_input_ids=decoder_input_ids.to(device), |
|
max_length=model_ext.decoder.config.max_position_embeddings, |
|
pad_token_id=processor_ext.tokenizer.pad_token_id, |
|
eos_token_id=processor_ext.tokenizer.eos_token_id, |
|
use_cache=True, |
|
bad_words_ids=[[processor_ext.tokenizer.unk_token_id]], |
|
return_dict_in_generate=True, |
|
) |
|
|
|
sequence = processor_ext.batch_decode(outputs.sequences)[0] |
|
sequence = sequence.replace(processor_ext.tokenizer.eos_token, "").replace(processor_ext.tokenizer.pad_token, "") |
|
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() |
|
print(processor_ext.token2json(sequence)) |
|
col3.header("Features") |
|
col3.subheader(processor_ext.token2json(sequence)) |
|
|
|
|