File size: 5,636 Bytes
183f457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d208b0
183f457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import torch
import requests
from PIL import Image
from matplotlib import pyplot as plt
import numpy as np
import pandas as pd

from lavis.common.gradcam import getAttMap
from lavis.models import load_model_and_preprocess

from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, AutoModelForSeq2SeqLM
import gradio as gr

def prepare_data(image, question):
    image = vis_processors["eval"](image).unsqueeze(0).to(device)
    question = txt_processors["eval"](question)
    samples = {"image": image, "text_input": [question]}
    return samples

def gradcam_attention(image, question):
    dst_w = 720
    samples = prepare_data(image, question)
    samples = model.forward_itm(samples=samples)
    
    w, h = image.size
    scaling_factor = dst_w / w

    resized_img = image.resize((int(w * scaling_factor), int(h * scaling_factor)))
    norm_img = np.float32(resized_img) / 255
    gradcam = samples['gradcams'].reshape(24,24)

    avg_gradcam = getAttMap(norm_img, gradcam, blur=True)
    return (avg_gradcam * 255).astype(np.uint8)

def generate_cap(image, question, cap_number):
    samples = prepare_data(image, question)
    samples = model.forward_itm(samples=samples)
    samples = model.forward_cap(samples=samples, num_captions=cap_number, num_patches=5)
    print('Examples of question-guided captions: ')
    return pd.DataFrame({'Caption': samples['captions'][0][:cap_number]})

def postprocess(text):
    for i, ans in enumerate(text):
        for j, w in enumerate(ans):
            if w == '.' or w == '\n':
                ans = ans[:j].lower()
                break
    return ans

def generate_answer(image, question):
    samples = prepare_data(image, question)
    samples = model.forward_itm(samples=samples)
    samples = model.forward_cap(samples=samples, num_captions=5, num_patches=5)
    samples = model.forward_qa_generation(samples)
    Img2Prompt = model.prompts_construction(samples)
    Img2Prompt_input = tokenizer(Img2Prompt, padding='longest', truncation=True, return_tensors="pt").to(device)

    outputs = llm_model.generate(input_ids=Img2Prompt_input.input_ids,
                            attention_mask=Img2Prompt_input.attention_mask,
                            max_length=20+len(Img2Prompt_input.input_ids[0]),
                            return_dict_in_generate=True,
                            output_scores=True
                            )
    pred_answer = tokenizer.batch_decode(outputs.sequences[:, len(Img2Prompt_input.input_ids[0]):])
    pred_answer = postprocess(pred_answer)
    print(pred_answer, type(pred_answer))
    return pred_answer
    
# setup device to use
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)

def load_model(model_selection):
    model = AutoModelForCausalLM.from_pretrained(model_selection)
    tokenizer = AutoTokenizer.from_pretrained(model_selection, use_fast=False)
    return model,tokenizer

# Choose LLM to use
# weights for OPT-6.7B/OPT-13B/OPT-30B/OPT-66B will download automatically
print("Loading Large Language Model (LLM)...")
llm_model, tokenizer = load_model('facebook/opt-1.3b')  # ~13G (FP16)
llm_model.to(device)
model, vis_processors, txt_processors = load_model_and_preprocess(name="img2prompt_vqa", model_type="base", is_eval=True, device=device)


# ---- Gradio Layout -----
title = "From Images to Textual Prompts: Zero-shot VQA with Frozen Large Language Models"
df_init = pd.DataFrame(columns=['Caption'])
raw_image = gr.Image(label='Input image', type="pil")
question = gr.Textbox(label="Input question", lines=1, interactive=True)
demo = gr.Blocks(title=title)
demo.encrypt = False
cap_df = gr.DataFrame(value=df_init, label="Caption dataframe", row_count=(0, "dynamic"), max_rows = 20, wrap=True, overflow_row_behaviour='paginate')

with demo:
    with gr.Row():
      gr.Markdown(f'''
                  <div>
                  <h1 style='text-align: center'>From Images to Textual Prompts: Zero-shot VQA with Frozen Large Language Models</h1>
                  </div>
                  <div align="center">
                  <h3>  What you can do with this space </h3>
                  <h4> 1. Upload your image and fill your question </h4>
                  <h4> 2. Generating gradcam attention from model </h4>
                  <h4> 3. Creating caption from your image </h4>
                  <h4> 4. Answering your question based on uploaded image </h4>
                  </div>
                  ''')  
    examples = gr.Examples(examples=
                [["image1.jpg", "What type of bird is this?"]],
    label="Examples", inputs=[raw_image, question])
    
    with gr.Row():
      with gr.Column():
          raw_image.render()
      with gr.Column():
          avg_gradcam = gr.Image(label="GradCam image",)

    with gr.Row():
      with gr.Column():
          question.render()
      with gr.Column():
          number_cap = gr.Number(precision=0, value=5, label="Selected number of caption you want to generate", interactive=True)
    with gr.Row():  
      with gr.Column():  
          gradcam_btn = gr.Button("Generate Gradcam")
          gradcam_btn.click(gradcam_attention, [raw_image, question], outputs=[avg_gradcam])
      with gr.Column():
          cap_btn = gr.Button("Generate caption")
          cap_btn.click(generate_cap, [raw_image, question, number_cap], [cap_df])
    with gr.Row():
      with gr.Column():
          cap_df.render()
    with gr.Row():
        anws_btn = gr.Button("Answer")
        text_output = gr.Textbox()
        anws_btn.click(generate_answer, [raw_image, question], outputs=text_output)

demo.launch(debug=True)