Spaces:
Runtime error
Runtime error
File size: 5,636 Bytes
183f457 1d208b0 183f457 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
import torch
import requests
from PIL import Image
from matplotlib import pyplot as plt
import numpy as np
import pandas as pd
from lavis.common.gradcam import getAttMap
from lavis.models import load_model_and_preprocess
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, AutoModelForSeq2SeqLM
import gradio as gr
def prepare_data(image, question):
image = vis_processors["eval"](image).unsqueeze(0).to(device)
question = txt_processors["eval"](question)
samples = {"image": image, "text_input": [question]}
return samples
def gradcam_attention(image, question):
dst_w = 720
samples = prepare_data(image, question)
samples = model.forward_itm(samples=samples)
w, h = image.size
scaling_factor = dst_w / w
resized_img = image.resize((int(w * scaling_factor), int(h * scaling_factor)))
norm_img = np.float32(resized_img) / 255
gradcam = samples['gradcams'].reshape(24,24)
avg_gradcam = getAttMap(norm_img, gradcam, blur=True)
return (avg_gradcam * 255).astype(np.uint8)
def generate_cap(image, question, cap_number):
samples = prepare_data(image, question)
samples = model.forward_itm(samples=samples)
samples = model.forward_cap(samples=samples, num_captions=cap_number, num_patches=5)
print('Examples of question-guided captions: ')
return pd.DataFrame({'Caption': samples['captions'][0][:cap_number]})
def postprocess(text):
for i, ans in enumerate(text):
for j, w in enumerate(ans):
if w == '.' or w == '\n':
ans = ans[:j].lower()
break
return ans
def generate_answer(image, question):
samples = prepare_data(image, question)
samples = model.forward_itm(samples=samples)
samples = model.forward_cap(samples=samples, num_captions=5, num_patches=5)
samples = model.forward_qa_generation(samples)
Img2Prompt = model.prompts_construction(samples)
Img2Prompt_input = tokenizer(Img2Prompt, padding='longest', truncation=True, return_tensors="pt").to(device)
outputs = llm_model.generate(input_ids=Img2Prompt_input.input_ids,
attention_mask=Img2Prompt_input.attention_mask,
max_length=20+len(Img2Prompt_input.input_ids[0]),
return_dict_in_generate=True,
output_scores=True
)
pred_answer = tokenizer.batch_decode(outputs.sequences[:, len(Img2Prompt_input.input_ids[0]):])
pred_answer = postprocess(pred_answer)
print(pred_answer, type(pred_answer))
return pred_answer
# setup device to use
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
def load_model(model_selection):
model = AutoModelForCausalLM.from_pretrained(model_selection)
tokenizer = AutoTokenizer.from_pretrained(model_selection, use_fast=False)
return model,tokenizer
# Choose LLM to use
# weights for OPT-6.7B/OPT-13B/OPT-30B/OPT-66B will download automatically
print("Loading Large Language Model (LLM)...")
llm_model, tokenizer = load_model('facebook/opt-1.3b') # ~13G (FP16)
llm_model.to(device)
model, vis_processors, txt_processors = load_model_and_preprocess(name="img2prompt_vqa", model_type="base", is_eval=True, device=device)
# ---- Gradio Layout -----
title = "From Images to Textual Prompts: Zero-shot VQA with Frozen Large Language Models"
df_init = pd.DataFrame(columns=['Caption'])
raw_image = gr.Image(label='Input image', type="pil")
question = gr.Textbox(label="Input question", lines=1, interactive=True)
demo = gr.Blocks(title=title)
demo.encrypt = False
cap_df = gr.DataFrame(value=df_init, label="Caption dataframe", row_count=(0, "dynamic"), max_rows = 20, wrap=True, overflow_row_behaviour='paginate')
with demo:
with gr.Row():
gr.Markdown(f'''
<div>
<h1 style='text-align: center'>From Images to Textual Prompts: Zero-shot VQA with Frozen Large Language Models</h1>
</div>
<div align="center">
<h3> What you can do with this space </h3>
<h4> 1. Upload your image and fill your question </h4>
<h4> 2. Generating gradcam attention from model </h4>
<h4> 3. Creating caption from your image </h4>
<h4> 4. Answering your question based on uploaded image </h4>
</div>
''')
examples = gr.Examples(examples=
[["image1.jpg", "What type of bird is this?"]],
label="Examples", inputs=[raw_image, question])
with gr.Row():
with gr.Column():
raw_image.render()
with gr.Column():
avg_gradcam = gr.Image(label="GradCam image",)
with gr.Row():
with gr.Column():
question.render()
with gr.Column():
number_cap = gr.Number(precision=0, value=5, label="Selected number of caption you want to generate", interactive=True)
with gr.Row():
with gr.Column():
gradcam_btn = gr.Button("Generate Gradcam")
gradcam_btn.click(gradcam_attention, [raw_image, question], outputs=[avg_gradcam])
with gr.Column():
cap_btn = gr.Button("Generate caption")
cap_btn.click(generate_cap, [raw_image, question, number_cap], [cap_df])
with gr.Row():
with gr.Column():
cap_df.render()
with gr.Row():
anws_btn = gr.Button("Answer")
text_output = gr.Textbox()
anws_btn.click(generate_answer, [raw_image, question], outputs=text_output)
demo.launch(debug=True) |